Peridiapiric Metal Concentration: Example of the Bou Grine Deposit (Tunisian Atlas)

1994 ◽  
pp. 354-389 ◽  
Author(s):  
J. J. Orgeval
2019 ◽  
pp. 1-8
Author(s):  
F. S. Nworie ◽  
S. O. Ngele ◽  
J. C. Onah

Metal ions present in waste samples, industrial effluents, acid mines and other aqueous media constitute a serious challenge in different human activities. Solvent extraction a technique for preconcentration, separation and identification of trace amount of metal ions coupled with multivariate chemometric technique was used for the determination of Fe(II) and Cr(III) from solutions in the presence of bis(salicylidene)ethylenediamine (SALEN). The influence of main extraction variables affecting the extraction efficiency was simultaneously studied and regression model equations illustrating the relationship between variables predicted. The extraction parameters (time of extraction, acid concentration, ligand concentration, temperature and metal concentration) were optimized using experimental designs with the contributions of the various parameters to extraction of the metal ions bound to the complexone evaluated using SPSS19.0 software. The statistically determined simulated models for the parameters were R2 = 0.946, 0.727, 0.793, 0.53, 0.53, 1.000 and F- values of 70.400, 13. 285, 15.348, 4.646 and 2.569×105 respectively for time of extraction, acid concentration, ligand concentration, temperature and metal concentration for Cr (III). For Fe (II), R2 = 0.243, 0.371, 0.519, 0.446, 1.000 and F-values of 0.964, 2.953, 4.310, 3.216 and 2.516×105 for time of extraction, acid concentration, ligand concentration, temperature and metal concentration respectively. The level of significance of the models as predicted was both lower than 5% making it feasible, efficient, reproducible and accurate. This means that metal ions at the conditions stated could be removed from waste samples, industrial effluents, acid mines and other aqueous media with extension in industrial scale application.


2021 ◽  
pp. 104942
Author(s):  
Manel Chnayna ◽  
Benjamin Sames ◽  
Khaled Trabelsi ◽  
Yassine Houla ◽  
Amine Hanini ◽  
...  

2008 ◽  
Vol 145 (1-3) ◽  
pp. 475-475 ◽  
Author(s):  
Elizabeta Has-Schön ◽  
Ivan Bogut ◽  
Gordana Kralik ◽  
Stjepan Bogut ◽  
Janja Horvatić ◽  
...  

2016 ◽  
Vol 106 (1-2) ◽  
pp. 190-199 ◽  
Author(s):  
Igor Felja ◽  
Marija Romić ◽  
Davor Romić ◽  
Helena Bakić ◽  
Kristina Pikelj ◽  
...  

2000 ◽  
Vol 171 (4) ◽  
pp. 431-440 ◽  
Author(s):  
Lahcen Boutib ◽  
Fetheddine Melki ◽  
Fouad Zargouni

Abstract Structural analysis of late Cretaceous sequences from the northeastern Tunisian Atlas, led to conclude on an active basin floor instability. Regional tectonics resulted in tilted blocks with a subsidence reorganization, since the Campanian time. These structural movements are controlled both by N140 and N100-120 trending faults. The Turonian-Coniacian and Santonian sequences display lateral thickness and facies variation, due to tectonic activity at that time. During Campanian-Maastrichtian, a reorganization of the main subsidence areas occurred, the early Senonian basins, have been sealed and closed and new half graben basins developed on area which constituted previously palaeohigh structures. These syndepositional deformations are characterized by frequent slumps, synsedimentary tilting materials, sealed normal faults and progressive low angle unconformities. These tilted blocks combined to a subsidence axis migration were induced by a NE-SW trending extensional regime. This extension which affects the Tunisian margin during the Upper Cretaceous, is related to the Tethyan and Mesogean rifting phase which resulted from the combined movements of the African and European plates.


Sign in / Sign up

Export Citation Format

Share Document