basin floor
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 57)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
pp. SP520-2021-144
Author(s):  
Marie-Noëlle Guilbaud ◽  
Corentin Chédeville ◽  
Ángel Nahir Molina-Guadarrama ◽  
Julio Cesar Pineda-Serrano ◽  
Claus Siebe

AbstractThe eruption of the ∼10 km3 rhyolitic Las Derrumbadas twin domes about 2000 yrs ago has generated a wide range of volcano-sedimentary deposits in the Serdán-Oriental lacustrine basin, Trans-Mexican Volcanic Belt. Some of these deposits have been quarried, creating excellent exposures. In this paper we describe the domes and related products and interpret their mode of formation, reconstructing the main phases of the eruption as well as syn-and-post eruptive erosional processes. After an initial phreatomagmatic phase that built a tuff ring, the domes grew as an upheaved plug lifting a thick sedimentary pile from the basin floor. During uplift, the domes collapsed repeatedly to form a first-generation of hetero-lithologic hummocky debris avalanche deposits. Subsequent dome growth produced a thick talus and pyroclastic density currents. Later, the hydrothermally-altered over-steepened dome peaks fell to generate 2nd generation, mono-lithologic avalanches. Subsequently, small domes grew in the collapse scars. From the end of the main eruptive episode onwards, heavy rains remobilized parts of the dome carapaces and talus, depositing lahar aprons. Las Derrumbadas domes are still an important source of sediments in the basin, and ongoing mass-wasting processes are associated with hazards that should be assessed, given their potential impact on nearby populations.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5752296


2021 ◽  
Author(s):  
◽  
Zelia Dos Santos

<p>Northern Zealandia lies between Australia, New Zealandia, and New Caledonia. It has an area of 3,000,000 km2 and is made up of bathymetric rises and troughs with typical water depths of 1000 to 4000 m. I use 39,309 line km of seismic-reflection profiles tied to recent International Ocean Discovery Program (IODP) drilling and three boreholes near the coast of New Zealand to investigate stratigraphic architecture and assess the petroleum prospectivity of northern Zealandia.  Sparse sampling requires that stratigraphic and petroleum prospectivity inferences are drawn from better-known basins in New Zealand, Australia, New Caledonia, TimorLeste and Papua New Guinea. Five existing seismic-stratigraphic units are reviewed. Zealandia Seismic Unit U3 is sampled near New Zealand and may contain Jurassic Muhiriku Group coals. Elsewhere, Seismic Unit 3 may have oil-prone equivalents of the Jurassic Walloon Coal Measure in eastern Australia; or may contain Triassic-Jurassic marine source rocks, as found in offshore Bonaparte Basin, onshore Timor-Leste, and the Papuan Basin in Papua New Guinea. Seismic Unit U2b (Mid-Cretaceous) is syn-rift and may contain coal measures, as found in Taranaki-Aotea Basin and New Caledonia. Seismic Unit U2a (Late Cretaceous to Eocene) contains coaly source rocks in the southeastern part of the study area, and may also contain marine equivalent carbonaceous mudstone, as found at Site IODP U1509. Unit U2a is transgressive, with coaly source rocks and reservoir sandstones near its base, and clay, marl and chalk above that provides a regional seal. Seismic Unit U1b (Eocene-Oligocene) is mass-transport complexes and basin floor fans related to a brief phase of convergent deformation that created folds in the southern part of the study area and regionally uplifted ridges to create new sediment source areas. Basin floor fans may contain reservoir rock and Eocene folding created structural traps. Seismic Unit U1a is Oligocene and Neogene chalk, calcareous ooze, and marl that represents overburden. Mass accumulation rates (MAR) and climatic temperatures were high in the late Miocene and early Pliocene, resulting in peak thermal maturity and hydrocarbon expulsion at ~ 3 Ma.  Approximately one-fifth of the region has adequate source rock maturity for petroleum expulsion at the base of Seismic Unit U2: Fairway Basin (FWAY), southern New Caledonia Trough (NCTS) and Reinga Basin (REIN). Plays may exist in either Seismic Unit U3 or U2, with many plausible reservoir-seal combinations, and several possible trapping mechanisms: unconformities, normal faults, folds, or stratigraphic pinch-out. The rest of the region could be prospective, but requires a source rock to exist within Seismic Unit U3, which is mostly unsampled and remains poorly understood.</p>


2021 ◽  
Author(s):  
Ralph Hinsch

Abstract The petroleum province in Lower Austria resulted from the Alpine collision and the subsequent formation of the Vienna Basin. OMV is active in this area since its foundation in 1956. Several plays have been successfully tested and produced in this complex geological region. The main exploration focus is currently on the deep plays. However, this paper proposes a so far unrecognized and therefore undrilled play in a shallower level to broaden OMV's portfolio in Austria. Seismic re-interpretations of reprocessed 3D seismic data and structural reconstructions were used to review some of the existing plays and get novel ideas from improved understanding of processes. In the frontal accretion zone of the Alpine wedge, the Waschberg-Ždánice zone discoveries are limited to the frontal thrust unit and associated structures. The more internal parts of the thrust belt have only sparsely been drilled and are perceived not to have high-quality reservoir rocks. The detailed structural interpretations indicated that the foredeep axis during the Early Miocene was positioned in the thrust sheet located directly in front of the advancing Alpine wedge (comprising the eroding Rhenodanubian Flysch in its frontal part). Seismic amplitude anomalies can be interpreted to represent Lower Miocene basin floor and slope fans. Nearby wells did not penetrate these fans but drilled instead shale-dominated lithologies. Thus, the presence of potential sand-rich fans in front of the advancing alpine wedge is considered a potential new play in Lower Austria. Analogues are found in Upper Austria some 250 km to the West, where several large gas fields in Lower Miocene deposits located in front of the advancing Alpine wedge have been discovered by another operator. In that area the fans are only partly involved in the fold-thrust belt. In Lower Austria, these fans are located within the rear thrust sheet(s), providing a structural component to a mixed structural-stratigraphic trap. Two potential charge mechanism can be considered: a) biogenic gas charge from the organic matter of surrounding shales (like the Upper Austria analogues) or b) oil charge via the thrust fault planes from the Jurassic Mikulov Formation (the proven main source rock in the broader area). Our results add to the understanding of the Miocene structural-stratigraphic evolution of the Alpine collision zone. The definition of a potential new play may add significant value to OMV's upstream efforts in a very mature hydrocarbon province.


2021 ◽  
Author(s):  
◽  
Zelia Dos Santos

<p>Northern Zealandia lies between Australia, New Zealandia, and New Caledonia. It has an area of 3,000,000 km2 and is made up of bathymetric rises and troughs with typical water depths of 1000 to 4000 m. I use 39,309 line km of seismic-reflection profiles tied to recent International Ocean Discovery Program (IODP) drilling and three boreholes near the coast of New Zealand to investigate stratigraphic architecture and assess the petroleum prospectivity of northern Zealandia.  Sparse sampling requires that stratigraphic and petroleum prospectivity inferences are drawn from better-known basins in New Zealand, Australia, New Caledonia, TimorLeste and Papua New Guinea. Five existing seismic-stratigraphic units are reviewed. Zealandia Seismic Unit U3 is sampled near New Zealand and may contain Jurassic Muhiriku Group coals. Elsewhere, Seismic Unit 3 may have oil-prone equivalents of the Jurassic Walloon Coal Measure in eastern Australia; or may contain Triassic-Jurassic marine source rocks, as found in offshore Bonaparte Basin, onshore Timor-Leste, and the Papuan Basin in Papua New Guinea. Seismic Unit U2b (Mid-Cretaceous) is syn-rift and may contain coal measures, as found in Taranaki-Aotea Basin and New Caledonia. Seismic Unit U2a (Late Cretaceous to Eocene) contains coaly source rocks in the southeastern part of the study area, and may also contain marine equivalent carbonaceous mudstone, as found at Site IODP U1509. Unit U2a is transgressive, with coaly source rocks and reservoir sandstones near its base, and clay, marl and chalk above that provides a regional seal. Seismic Unit U1b (Eocene-Oligocene) is mass-transport complexes and basin floor fans related to a brief phase of convergent deformation that created folds in the southern part of the study area and regionally uplifted ridges to create new sediment source areas. Basin floor fans may contain reservoir rock and Eocene folding created structural traps. Seismic Unit U1a is Oligocene and Neogene chalk, calcareous ooze, and marl that represents overburden. Mass accumulation rates (MAR) and climatic temperatures were high in the late Miocene and early Pliocene, resulting in peak thermal maturity and hydrocarbon expulsion at ~ 3 Ma.  Approximately one-fifth of the region has adequate source rock maturity for petroleum expulsion at the base of Seismic Unit U2: Fairway Basin (FWAY), southern New Caledonia Trough (NCTS) and Reinga Basin (REIN). Plays may exist in either Seismic Unit U3 or U2, with many plausible reservoir-seal combinations, and several possible trapping mechanisms: unconformities, normal faults, folds, or stratigraphic pinch-out. The rest of the region could be prospective, but requires a source rock to exist within Seismic Unit U3, which is mostly unsampled and remains poorly understood.</p>


2021 ◽  
Vol 930 (1) ◽  
pp. 012028
Author(s):  
V Dermawan ◽  
D R Dermawan ◽  
M J Ismoyo ◽  
P H Wicaksono

Abstract Drop structures are required if the slope of the ground level is steeper than the maximum allowable gradient channel. Drop structures become bigger as height increases. Its hydraulic capability may be reduced due to variations of jets falling on the stilling basin floor due to discharge changing. Drop structures should not be used if the change in energy level exceeds 1.50 m. The free-falling overflow on drop structures will hit the stilling basin and move downstream. As a result of overflows and turbulence in the pool below the nappe, some energy is dissipated at the front. The rest of the energy will be reduced downstream. The objectives of this study are to investigate the hydraulics flow behavior in straight and sloping drop structures and to investigate hydraulics flow behavior in a single and serial vertical drop (stepped drop). The hydraulic model results of single and stepped drop structures are compared to obtain flow behavior and energy dissipation information. The comparisons are specific to the flow parameters, including flow depth at the drop structures toe, flow depth after the jump, and hydraulic jump length.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sébastien Rohais ◽  
Julien Bailleul ◽  
Sandra Brocheray ◽  
Julien Schmitz ◽  
Paolo Paron ◽  
...  

Intraslope lobes, or perched lobes, are attracting scientific interest because they represent a key archive between the shelf and the deep basin plain when looking at a complete source-to-sink depositional system across a continental margin and can form significant offshore hydrocarbon plays. In this study, we focus on a detailed characterization of intraslope lobes of the Motta San Giovanni Formation (Miocene, Calabria), which were deposited in confined conditions during the Miocene along a transform margin. We determine the typical facies associations and stratigraphic architecture of these intraslope lobes using a 3D digital outcrop model resulting from a combined Uncrewed Aerial Vehicle (UAV) and walking acquisition, together with sedimentological logging and geological mapping. We propose recognition criteria for the identification of intraslope lobes, including facies and geometries, integrated within a depositional model. A comparison with other well-known intraslope and confined lobes, as well as basin floor lobes, is finally discussed, to highlight the peculiarities of intraslope lobes deposited along transform margins. The diagnostic depositional model for these types of intraslope lobes includes four main stages of evolution: 1) Stage 1—isolated detached lobe precursor in response to a flushed hydraulic jump, 2) Stage 2—prograding and aggrading lobe elements associated with a relatively stable and submerged hydraulic jump in the Channel-Lobe Transition Zone (CLTZ), 3) Stage 3—major bypass associated with lateral accretion and local aggradation interpreted as a renewal of a normal hydraulic jump in the CTLZ, and 4) Stage 4—erosion and bypass then abandonment. The development of intraslope lobes along active transform margins is allowed by tectonically induced slope segmentation and local confinement. In such a context, flow stripping and overspill processes occurred. Resulting lobes appear to be particularly small and relatively thin sandy deposits. They could be considered end-member in a lobe classification based on the Net-to-Gross content (high) and taking into account their thickness/width ratio (intermediate between 10:1 and 100:1 lines).


2021 ◽  
Author(s):  
Christopher James Banks ◽  
Bohdan Bodnaruk ◽  
Vladislav Kalmutskyi ◽  
Yerlan Seilov ◽  
Murat Zhiyenkulov ◽  
...  

Abstract Context is everything. Not all thick sands pay out and not all thin sands are poorly productive. It is important to understand a basin's palaeogeographical drivers, the resultant palaeoenvironments and their constituent sedimentary architecture. Development of a depositional model can be predictive with respect to the magnitude of accessible pore space for potential development. We present a multi-field study of the Dneipr-Donets basin. Over 600 wells were studied with &gt;4500 lithostratigraphical picks being made. Over 7500 sedimentological picks were made allowing mapping of facies bodies and charting shifts in facies types. A facies classification scheme was developed and applied. The Devonian-Permian sedimentary section records the creation, fill, and terminal closure of the Dneipr-Donets Basin:Syn-rift brittle extension (late Frasnian-Famennian): intracratonic rifting between the Ukrainian Shield and Voronezh Massif formed a NW-SE orientated trough, with associated basaltic extrusion. Basin architecture consists of rotated fault blocks forming graben mini-basins. Sedimentation is dominantly upper shoreface but sand packages are poorly correlatable due to the faulted palaeotopography.Early Post-rift thermal subsidence (Visean-Lower Bashkirian): the faulted palaeotopography was filled and thermal subsidence drove basin deepening. Cyclical successions of offshore, lower shoreface and upper shoreface dominate. Sands are typically thin (&lt;10m) but can be widely correlated and have high pore space connectivity.Mid Post-rift: the Bashkirian (C22/C23 boundary), paralic systems prograde over the shoreface. Changes in vertical facies are abrupt due to a low gradient to basin floor. Deltaic and fluvial facies can produce thick amalgamated sands (&gt;30m), but access limited pore space because they are laterally restricted bodies.Terminal post-rift (Mykytivskan): above the lower Permian, the convergence of the Kazahkstanian and Siberian continents began to restrict the Dnieper-Donets basin's access to open ocean. The basin approached full conditions and deposition was dominated by evaporite precipitation, with periodic oceanic recharge. Ultimately, this sediment records the formation of Pangea. The successions examined were used to construct a basinal relative sea level curve, which can be applied elsewhere in the basin. This can be used to help provide palaeogeographical context to a field, which in turn controls the sedimentary architecture.


2021 ◽  
Author(s):  
Pierre Henry ◽  
Sinan Özeren ◽  
Nurettin Yakupoğlu ◽  
Ziyadin Çakir ◽  
Emmanuel de Saint-Léger ◽  
...  

Abstract. Earthquake-induced submarine slope destabilization is known to cause debris flows and turbidity currents, but the hydrodynamic processes associated with these events remain poorly understood. Records are scarce and this notably limits our ability to interpret marine paleoseismological sedimentary records. An instrumented frame comprising a pressure recorder and a Doppler recording current meter deployed at the seafloor in the Sea of Marmara Central Basin recorded consequences of a MW = 5.8 earthquake occurring Sept 26, 2019 and of a Mw = 4.7 foreshock two days before. The smaller event caused sediment resuspension but no strong current. The larger event triggered a complex response involving a mud flow and turbidity currents with variable velocities and orientations, which may result from multiple slope failures. A long delay of 10 hours is observed between the earthquake and the passing of the strongest turbidity current. The distance travelled by the sediment particles during the event is estimated to several kilometres, which could account for a local deposit on a sediment fan at the outlet of a canyon, but not for the covering of the whole basin floor. We show that after a moderate earthquake, delayed turbidity current initiation may occur, possibly by ignition of a cloud of resuspended sediment. Some caution is thus required when tying seismoturbidites with earthquakes of historical importance. However, the horizontal extent of the deposits should remain indicative of the size of the earthquake.


Author(s):  
Surya Tejasvi Thota ◽  
Md Aminul Islam ◽  
Mohamed Ragab Shalaby

AbstractThe present study investigates the reservoir characteristics of the Mount Messenger Formation of Kaimiro-Ngatoro Field which was deposited in deep-water environment. A 3D seismic dataset, core data and well data from the Kaimiro-Ngatoro Field were utilized to identify lithofacies, sedimentary structures, stratigraphic units, depositional environments and to construct 3D geological models. Five different lithologies of sandstone, sandy siltstone, siltstone, claystone and mudstone are identified from core photographs, and also Bouma sequence divisions are also observed. Based on log character Mount Messenger Formation is divided into two stratigraphic units slope fans and basin floor fans; core analysis suggests that basin floor fans show better reservoir qualities compared to slope fan deposits. Seismic interpretation indicates 2 horizons and 11 faults, majority of faults have throw less than 10 m, and most of the faults have high angle dips of 70–80°. The Kaimiro and Ngatoro Fields are separated by a major Inglewood fault. Variance attribute helped to interpret faults, and other seismic attributes such as root-mean-square amplitude, envelope and generalized spectral decomposition also helped to detect hydrocarbons. The lithofacies model was constructed by using sequential simulation indicator algorithm, and the petrophysical models were constructed using sequential Gaussian simulation algorithm. The petrophysical parameters determined from the models comprised of  up to ≥ 25% porosity, permeability up to around 600mD, hydrocarbon saturation up to 60%, net to gross varies from 0 to 100%, majority of shale volumes are around 15–20%, the study interval mostly consists of macropores with some megapores and 4 hydraulic flow units. This study best characterizes the deep-water turbidite reservoir in New Zealand.


2021 ◽  
Author(s):  
◽  
Sarah Grain

<p>The Moki Formation, Taranaki Basin, New Zealand, is a Mid Miocene (Late Altonian to Early Lillburnian) sand-rich turbidite complex bounded above and below by the massive bathyal mudstone of the Manganui Formation. The Moki Formation is a proven hydrocarbon reservoir with its stacked, thick, tabular sandstone packages totalling more than 300 m in places. Previous regional studies of the formation have been based primarily on well data and resulted in varying palaeogeographic interpretations. This study, restricted to the southern offshore region of the basin, better constrains the spatial and temporal development of the Moki Formation by combining well data with seismic interpretation to identify key stratal geometries within the sediment package. Nearly 30,000 km of 2D seismic reflection profiles and two 3D surveys, along with data from 18 wells and three cores were reviewed and key sections analysed in detail. Seismic facies have been identified which provide significant insights into the structure, distribution and progressive development of the Moki Formation. These include: a clearly defined eastern limit of the fan complex, thinning and fining of the distal turbidite complex onto the basin floor in the north and west, evidence of fan lobe switching, spectacular meandering channel systems incised into the formation at seismic scales, and the coeval palaeoshelf-slope break in the south east of the basin. In addition, a Latest Lillburnian / Waiauan turbidite complex has been mapped with large feeder, fan and bypassing channels traced. This study presents an improved palaeogeographic interpretation of the Moki Formation and the younger, Latest Lillburnian / Waiauan-aged, turbidite complex. This interpretation shows that during the Late Altonian, sandstone deposition was localised to small fan bodies in the vicinity of Maui-4 to Moki-1 wells. A bathymetric deepening during the Clifdenian is identified, which appears to have occurred concurrently as the establishment of the Moki Formation fan system, centred around the southern and central wells. With continued sediment supply to the basin floor, the fan system prograded markedly northward and spilled onto the Western Stable Platform during the early Lillburnian. Sand influx to the bathyal basin floor abruptly ceased and large volumes of mud were deposited. By the Waiauan stage, sands were again deposited at bathyal depths on fan bodies and carried to greater depths through a complex bypassing channel system.</p>


Sign in / Sign up

Export Citation Format

Share Document