farmed fish
Recently Published Documents


TOTAL DOCUMENTS

724
(FIVE YEARS 259)

H-INDEX

45
(FIVE YEARS 8)

2022 ◽  
Vol 85 ◽  
pp. 102421
Author(s):  
Suzannah-Lynn Billing ◽  
George Charalambides ◽  
Paul Tett ◽  
Michelle Giordano ◽  
Carlo Ruzzo ◽  
...  

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 144
Author(s):  
Michail I. Gladyshev ◽  
Alexander A. Makhrov ◽  
Ilia V. Baydarov ◽  
Stanislava S. Safonova ◽  
Viktor M. Golod ◽  
...  

Fatty acids (FA) of muscle tissue of Salvelinus species and its forms, S. alpinus, S. boganidae, S. drjagini, and S. fontinalis, from six Russian lakes and two aquacultures, were analyzed. Considerable variations in FA compositions and contents were found, including contents of eicosapentaenoic and docosahexaenoic acids (EPA and DHA), which are important indicators of fish nutritive value for humans. As found, contents of EPA+DHA (mg·g−1 wet weight) in muscle tissue of Salvelinus species and forms varied more than tenfold. These differences were supposed to be primarily determined by phylogenetic factors, rather than ecological factors, including food. Two species, S. boganidae and S. drjagini, had the highest EPA+DHA contents in their biomass and thereby could be recommended as promising species for aquaculture to obtain production with especially high nutritive value. Basing on revealed differences in FA composition of wild and farmed fish, levels of 15-17-BFA (branched fatty acids), 18:2NMI (non-methylene interrupted), 20:2NMI, 20:4n-3, and 22:4n-3 fatty acids were recommended for verifying trade label information of fish products on shelves, as the biomarkers to differentiate wild and farmed charr.


Author(s):  
Xiaozhe Fu ◽  
Kejin Li ◽  
Yinjie Niu ◽  
Qiang Lin ◽  
Hongru Liang ◽  
...  

Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of farmed fish disease that has caused huge economic losses in fresh and marine fish aquaculture. The redox state of cells is shaped by virus into a favorable microenvironment for virus replication and proliferation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Eleni Mente ◽  
Thomas Bousdras ◽  
Konstantinos Feidantsis ◽  
Nikolas Panteli ◽  
Maria Mastoraki ◽  
...  

AbstractHerein, the effect of dietary inclusion of insect (Tenebrio molitor) meal on hepatic pathways of apoptosis and autophagy in three farmed fish species, gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss), fed diets at 25%, 50% and 60% insect meal inclusion levels respectively, was investigated. Hepatic proteome was examined by liver protein profiles from the three fish species, obtained by two-dimensional gel electrophoresis. Although cellular stress was evident in the three teleost species following insect meal, inclusion by T. molitor, D. labrax and O. mykiss suppressed apoptosis through induction of hepatic autophagy, while in S. aurata both cellular procedures were activated. Protein abundance showed that a total of 30, 81 and 74 spots were altered significantly in seabream, European seabass and rainbow trout, respectively. Insect meal inclusion resulted in individual protein abundance changes, with less number of proteins altered in gilthead seabream compared to European seabass and rainbow trout. This is the first study demonstrating that insect meal in fish diets is causing changes in liver protein abundances. However, a species-specific response both in the above mentioned bioindicators, indicates the need to strategically manage fish meal replacement in fish diets per species.


Aquaculture ◽  
2022 ◽  
pp. 737877
Author(s):  
MohammedA.E. Naiel ◽  
Abdelrazeq M. Shehata ◽  
Abdallah I. El-kholy ◽  
Karima El-Naggar ◽  
Mayada R. Farag ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 195
Author(s):  
Matthew Sprague ◽  
Tsz Chong Chau ◽  
David I. Givens

Iodine is an important nutrient for human health and development, with seafood widely acknowledged as a rich source. Demand from the increasing global population has resulted in the availability of a wider range of wild and farmed seafood. Increased aquaculture production, however, has resulted in changes to feed ingredients that affect the nutritional quality of the final product. The present study assessed the iodine contents of wild and farmed seafood available to UK consumers and evaluated its contribution to current dietary iodine intake. Ninety-five seafood types, encompassing marine and freshwater fish and shellfish, of wild and farmed origins, were purchased from UK retailers and analysed. Iodine contents ranged from 427.4 ± 316.1 to 3.0 ± 1.6 µg·100 g−1 flesh wet weight (mean ± SD) in haddock (Melanogrammus aeglefinus) and common carp (Cyprinus carpio), respectively, being in the order shellfish > marine fish > freshwater fish, with crustaceans, whitefish (Gadiformes) and bivalves contributing the greatest levels. Overall, wild fish tended to exhibit higher iodine concentrations than farmed fish, with the exception of non-fed aquaculture species (bivalves). However, no significant differences were observed between wild and farmed Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), and turbot (Psetta maxima). In contrast, farmed European seabass (Dicentrarchus labrax) and seabream (Sparus aurata) presented lower, and Atlantic halibut (Hippoglossus hippoglossus) higher, iodine levels than their wild counterparts, most likely due to the type and inclusion level of feed ingredients used. By following UK dietary guidelines for fish consumption, a portion of the highest oily (Atlantic mackerel, Scomber scombrus) and lean (haddock) fish species would provide two-thirds of the weekly recommended iodine intake (980 µg). In contrast, actual iodine intake from seafood consumption is estimated at only 9.4–18.0% of the UK reference nutrient intake (140 µg·day−1) across different age groups and genders, with females obtaining less than their male equivalents.


2021 ◽  
Author(s):  
Mishal Cohen-Rengifo ◽  
Morgane Danion ◽  
Anne-Alicia Gonzalez ◽  
Marie-Laure Bégout ◽  
Lauriane Madec ◽  
...  

Abstract Background Progressive climate-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance internal acid-base homeostasis efficiently, indirect ionic regulation effects that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes of ecological and commercial importance is not yet understood. Farmed fish are highly susceptible to disease outbreak yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted CO2 levels (IPCC RCP8.5), with parents being exposed for four years and their offspring for two years. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F1 offspring) and a viral challenge (exposing F1 offspring to betanodavirus) where we assessed survival rates. Results We discovered long-term intergenerational molecular trade-offs in both sensory and immune systems. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from two-year-old F1 offspring revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected extensive OA-induced intergenerational up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. In addition, intergenerational exposure to OA induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F1 fish challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. Conclusion F1 exposed to OA-intergenerational acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently altered. Our results reveal that trade-offs in adaptive plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed fish, suggesting that intergenerational plasticity propagate with progressive exposure to OA and will have important consequences for how cultured and wild fish interacts with its environment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fakai Bai ◽  
Xuexi Wang ◽  
Xingjian Niu ◽  
Guiping Shen ◽  
Jidan Ye

A lipidomic analysis was conducted to provide the first detailed overview of lipid molecule profiles in response to dietary lipid and taurine and associations of liver lipid-lowering effects of dietary taurine with lipid molecular species and the positional distributions of fatty acids in the liver of juvenile orange-spotted groupers (Epinephelus coioides). The results indicated that the liver was more sensitive to varied dietary lipid and taurine contents than the muscle with regard to lipid molecules. A total of 131 differential lipid molecules (DLMs) were observed in the liver of groupers when dietary taurine was increased from 0 to 1% at 15% lipid, among which all the up and down-regulated DLMs are phospholipids (PLs) and triglycerides (TGs), respectively. The liver content of TGs containing 18:2n-6 attached at the sn-2 and sn-3 positions on the glycerol backbone increased with increasing dietary lipid from 10 to 15% but decreased with increasing dietary taurine from 0 to 1%. Therefore, dietary taurine can not only reduce lipid accumulation through decreasing the contents of TGs containing 18:2n-6 at the sn-2 and sn-3 positions but also enhance the anti-inflammatory capacity and health status of groupers. This study will also provide a new insight into the function of taurine in farmed fish.


2021 ◽  
pp. 1-16
Author(s):  
L. Baldi ◽  
T. Mancuso ◽  
M. Peri ◽  
L. Gasco ◽  
M.T. Trentinaglia

Since global demand for aquaculture products is expected to increase dramatically in the near future, policymakers and companies are considering the adoption of insect-based feed, which is more economically viable and environmentally sustainable than fish or vegetable-based meals currently used. Nonetheless, fish farmed with insects are still perceived as innovative products by consumers, and further studies exploring these demand-side concerns must be conducted to make sure a market for such products exists. This study focuses on the factors that can favour the acceptance of farmed fish fed with insects of a sample of young Italians. In particular, within the theoretical framework adopted in this analysis, we let acceptance be expressed by different dimensions, each potentially influenced by individual factors, such as socio-economic characteristics, as the provision of information on the nutritional and environmental benefits of insect-based feed for aquaculture, and as consumer psychometric indicators. In this respect, we use the by-dimensional definition of environmental attitude proposed by environmental psychologists, that considers attitude toward environmental protection and toward nature. In this survey, we reached 482 consumers, aged less than 40, using social networks. A Factor Analysis was performed to identify the different dimensions of the acceptance process. We then applied the Rasch model on consumers’ reported behaviours toward environmental protection or nature to retrieve their environmental attitudes. We performed a Seemingly Unrelated Regression to assess the importance of socio-demographic, information, and psychometric variables on the different dimensions of acceptance. Results indicate that the use of psychometric variables to study the acceptability of an innovative food product seems particularly appropriate. In addition to the role of environmental attitude, acceptance is also explained by some socio-demographic variables, with men and younger consumers being more inclined to accept the product. Acceptance is also higher among informed respondents, confirming the importance of reducing information asymmetries.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1441
Author(s):  
Alberto Falco ◽  
Melissa Bello-Perez ◽  
Rocío Díaz-Puertas ◽  
Matthew Mold ◽  
Mikolaj Adamek

Viral nervous necrosis (VNN) caused by the nervous necrosis virus (NNV) affects a broad range of primarily marine fish species, with mass mortality rates often seen among larvae and juveniles. Its genetic diversification may hinder the effective implementation of preventive measures such as vaccines. The present study describes different inactivation procedures for developing an inactivated vaccine against a new NNV isolate confirmed to possess deadly effects upon the European seabass (Dicentrarchus labrax), an important Mediterranean farmed fish species that is highly susceptible to this disease. First, an NNV isolate from seabass adults diagnosed with VNN was rescued and the sequences of its two genome segments (RNA1 and RNA2) were classified into the red-spotted grouper NNV (RGNNV) genotype, closely clustering to the highly pathogenic 283.2009 isolate. The testing of different inactivation procedures revealed that the virus particles of this isolate showed a marked resistance to heat (for at least 60 °C for 120 min with and without 1% BSA) but that they were fully inactivated by 3 mJ/cm2 UV-C irradiation and 24 h 0.2% formalin treatment, which stood out as promising NNV-inactivation procedures for potential vaccine candidates. Therefore, these procedures are feasible, effective, and rapid response strategies for VNN control in aquaculture.


Sign in / Sign up

Export Citation Format

Share Document