The Detection and Analysis of Optic Flow by Crabs: from Eye Movements to Electrophysiology

2002 ◽  
pp. 468-485 ◽  
Author(s):  
W. Jon. P. Barnes ◽  
B. Geoff. Horseman ◽  
Martin W. S. Macauley
Keyword(s):  
1998 ◽  
Vol 79 (3) ◽  
pp. 1461-1480 ◽  
Author(s):  
Markus Lappe ◽  
Martin Pekel ◽  
Klaus-Peter Hoffmann

Lappe, Markus, Martin Pekel, and Klaus-Peter Hoffmann. Optokinetic eye movements elicited by radial optic flow in the macaque monkey. J. Neurophysiol. 79: 1461–1480, 1998. We recorded spontaneous eye movements elicited by radial optic flow in three macaque monkeys using the scleral search coil technique. Computer-generated stimuli simulated forward or backward motion of the monkey with respect to a number of small illuminated dots arranged on a virtual ground plane. We wanted to see whether optokinetic eye movements are induced by radial optic flow stimuli that simulate self-movement, quantify their parameters, and consider their effects on the processing of optic flow. A regular pattern of interchanging fast and slow eye movements with a frequency of 2 Hz was observed. When we shifted the horizontal position of the focus of expansion (FOE) during simulated forward motion (expansional optic flow), median horizontal eye position also shifted in the same direction but only by a smaller amount; for simulated backward motion (contractional optic flow), median eye position shifted in the opposite direction. We relate this to a change in Schlagfeld typically observed in optokinetic nystagmus. Direction and speed of slow phase eye movements were compared with the local flow field motion in gaze direction (the foveal flow). Eye movement direction matched well the foveal motion. Small systematic deviations could be attributed to an integration of the global motion pattern. Eye speed on average did not match foveal stimulus speed, as the median gain was only ∼0.5–0.6. The gain was always lower for expanding than for contracting stimuli. We analyzed the time course of the eye movement immediately after each saccade. We found remarkable differences in the initial development of gain and directional following for expansion and contraction. For expansion, directional following and gain were initially poor and strongly influenced by the ongoing eye movement before the saccade. This was not the case for contraction. These differences also can be linked to properties of the optokinetic system. We conclude that optokinetic eye movements can be elicited by radial optic flow fields simulating self-motion. These eye movements are linked to the parafoveal flow field, i.e., the motion in the direction of gaze. In the retinal projection of the optic flow, such eye movements superimpose retinal slip. This results in complex retinal motion patterns, especially because the gain of the eye movement is small and variable. This observation has special relevance for mechanisms that determine self-motion from retinal flow fields. It is necessary to consider the influence of eye movements in optic flow analysis, but our results suggest that direction and speed of an eye movement should be treated differently.


1999 ◽  
Vol 81 (2) ◽  
pp. 945-949 ◽  
Author(s):  
D.-S. Yang ◽  
E. J. Fitzgibbon ◽  
F. A. Miles

Yang, D.-S., E. J. Fitzgibbon, and F. A. Miles. Short-latency vergence eye movements induced by radial optic flow in humans: dependence on ambient vergence level. J. Neurophysiol. 81: 945–949, 1999. Radial patterns of optic flow, such as those experienced by moving observers who look in the direction of heading, evoke vergence eye movements at short latency. We have investigated the dependence of these responses on the ambient vergence level. Human subjects faced a large tangent screen onto which two identical random-dot patterns were back-projected. A system of crossed polarizers ensured that each eye saw only one of the patterns, with mirror galvanometers to control the horizontal positions of the images and hence the vergence angle between the two eyes. After converging the subject's eyes at one of several distances ranging from 16.7 cm to infinity, both patterns were replaced with new ones (using a system of shutters and two additional projectors) so as to simulate the radial flow associated with a sudden 4% change in viewing distance with the focus of expansion/contraction imaged in or very near both foveas. Radial-flow steps induced transient vergence at latencies of 80–100 ms, expansions causing increases in convergence and contractions the converse. Based on the change in vergence 90–140 ms after the onset of the steps, responses were proportional to the preexisting vergence angle (and hence would be expected to be inversely proportional to viewing distance under normal conditions). We suggest that this property assists the observer who wants to fixate ahead while passing through a visually cluttered area (e.g., a forest) and so wants to avoid making vergence responses to the optic flow created by the nearby objects in the periphery.


Perception ◽  
1997 ◽  
Vol 26 (7) ◽  
pp. 823-830 ◽  
Author(s):  
Lothar Spillmann ◽  
Stuart Anstis ◽  
Anne Kurtenbach ◽  
Ian Howard

A random-dot field undergoing counterphase flicker paradoxically appears to move in the same direction as head and eye movements, ie opposite to the optic-flow field. The effect is robust and occurs over a wide range of flicker rates and pixel sizes. The phenomenon can be explained by reversed phi motion caused by apparent pixel movement between successive retinal images. The reversed motion provides a positive feedback control of the display, whereas under normal conditions retinal signals provide a negative feedback. This altered polarity invokes self-sustaining eye movements akin to involuntary optokinetic nystagmus.


2004 ◽  
pp. 79-107 ◽  
Author(s):  
F. A. Miles ◽  
C. Busettini ◽  
G. S. Masson ◽  
D. S. Yang

1993 ◽  
Vol 10 (4) ◽  
pp. 643-652 ◽  
Author(s):  
Roland Kern ◽  
Hans-Ortwin Nalbach ◽  
Dezsö Varjú

AbstractWalking crabs move their eyes to compensate for retinal image motion only during rotation and not during translation, even when both components are superimposed. We tested in the rock crab, Pachygrapsus marmoratus, whether this ability to decompose optic flow may arise from topographical interactions of local movement detectors. We recorded the optokinetic eye movements of the rock crab in a sinusoidally oscillating drum which carried two 10-deg wide black vertical stripes. Their azimuthal separation varied from 20 to 180 deg, and each two-stripe configuration was presented at different azimuthal positions around the crab. In general, the responses are the stronger the more widely the stripes are separated. Furthermore, the response amplitude depends also strongly on the azimuthal positions of the stripes. We propose a model with excitatory interactions between pairs of movement detectors that quantitatively accounts for the enhanced optokinetic responses to widely separated textured patches in the visual field that move in phase. The interactions take place both within one eye and, predominantly, between both eyes. We conclude that these interactions aid in the detection of rotation.


10.1167/6.6.1 ◽  
2010 ◽  
Vol 6 (6) ◽  
pp. 1-1 ◽  
Author(s):  
D. Yang ◽  
M. Zhu ◽  
R. W. Hertle

2021 ◽  
Vol 21 (3) ◽  
pp. 19
Author(s):  
Hiu Mei Chow ◽  
Jonas Knöll ◽  
Matthew Madsen ◽  
Miriam Spering
Keyword(s):  

2000 ◽  
Vol 53 (3) ◽  
pp. 765-791 ◽  
Author(s):  
Cyril Latimer ◽  
Catherine Stevens ◽  
Mark Irish ◽  
Leanne Webber

This paper reports the operation of robust attentional bias to the top and right during perception of small, single geometric forms. Same/different judgements of successively presented standard and comparison forms are faster when local differences are located at top and right rather than in other regions of the forms. The bias persists when form size is reduced to approximately one degree of visual angle, and it is unaffected by saccadic eye movements and by instructions to attend to other reliably differentiating regions of the forms. Results lend support in various degrees to two of the possible explanations of the bias: (1) a static, skewed distribution of attentional resources around eye fixation; and (2) biased, covert scanning that commences invariably at the top and right of stim ulus forms. Origins of the bias in terms of possible left-hemispheric capacity for constructing representations of visual stimuli from parts, as well as in terms of reading experience and prevailing optic flow during locomotion through space are considered. Recent investigations of conditions under which the bias can be maintained or reduced are mentioned.


Sign in / Sign up

Export Citation Format

Share Document