The Estimation of Intrinsic Low Dimensional Manifold Dimension in Atmospheric Chemical Reaction Systems

Author(s):  
Alison S. Tomlin ◽  
Louise Whitehouse ◽  
Richard Lowe
2021 ◽  
Author(s):  
Mikhail Andronov ◽  
Maxim Fedorov ◽  
Sergey Sosnin

<div>Humans prefer visual representations for the analysis of large databases. In this work, we suggest a method for the visualization of the chemical reaction space. Our technique uses the t-SNE approach that is parameterized by a deep neural network (parametric t-SNE). We demonstrated that the parametric t-SNE combined with reaction difference fingerprints can provide a tool for the projection of chemical reactions onto a low-dimensional manifold for easy exploration of reaction space. We showed that the global reaction landscape, been projected onto a 2D plane, corresponds well with already known reaction types. The application of a pretrained parametric t-SNE model to new reactions allows chemists to study these reactions on a global reaction space. We validated the feasibility of this approach for two marketed drugs: darunavir and oseltamivir. We believe that our method can help explore reaction space and inspire chemists to find new reactions and synthetic ways. </div><div><br></div>


2021 ◽  
Author(s):  
Mikhail Andronov ◽  
Maxim Fedorov ◽  
Sergey Sosnin

<div>Humans prefer visual representations for the analysis of large databases. In this work, we suggest a method for the visualization of the chemical reaction space. Our technique uses the t-SNE approach that is parameterized by a deep neural network (parametric t-SNE). We demonstrated that the parametric t-SNE combined with reaction difference fingerprints could provide a tool for the projection of chemical reactions onto a low-dimensional manifold for easy exploration of reaction space. We showed that the global reaction landscape, been projected onto a 2D plane, corresponds well with already known reaction types. The application of a pretrained parametric t-SNE model to new reactions allows chemists to study these reactions in a global reaction space. We validated the feasibility of this approach for two marketed drugs: darunavir and oseltamivir. We believe that our method can help to explore reaction space and will inspire chemists to find new reactions and synthetic ways. </div><div><br></div>


2021 ◽  
Author(s):  
Mikhail Andronov ◽  
Maxim Fedorov ◽  
Sergey Sosnin

<div>Humans prefer visual representations for the analysis of large databases. In this work, we suggest a method for the visualization of the chemical reaction space. Our technique uses the t-SNE approach that is parameterized by a deep neural network (parametric t-SNE). We demonstrated that the parametric t-SNE combined with reaction difference fingerprints can provide a tool for the projection of chemical reactions onto a low-dimensional manifold for easy exploration of reaction space. We showed that the global reaction landscape, been projected onto a 2D plane, corresponds well with already known reaction types. The application of a pretrained parametric t-SNE model to new reactions allows chemists to study these reactions on a global reaction space. We validated the feasibility of this approach for two marketed drugs: darunavir and oseltamivir. We believe that our method can help explore reaction space and inspire chemists to find new reactions and synthetic ways. </div><div><br></div>


2015 ◽  
Vol 73 ◽  
pp. 23-33 ◽  
Author(s):  
D. Rodrigues ◽  
S. Srinivasan ◽  
J. Billeter ◽  
D. Bonvin

2018 ◽  
Vol 114 ◽  
pp. 296-305 ◽  
Author(s):  
Julien Billeter ◽  
Diogo Rodrigues ◽  
Sriniketh Srinivasan ◽  
Michael Amrhein ◽  
Dominique Bonvin

Sign in / Sign up

Export Citation Format

Share Document