Spectral quasi equilibrium manifold and intrinsic low dimensional manifold: A multi-step reaction mechanism

Author(s):  
Faisal Sultan ◽  
Muhammad Shahzad ◽  
Mehboob Ali
2017 ◽  
Vol 19 (12) ◽  
pp. 125012 ◽  
Author(s):  
Carlos Floyd ◽  
Christopher Jarzynski ◽  
Garegin Papoian

2020 ◽  
Author(s):  
Wei Guo ◽  
Jie J. Zhang ◽  
Jonathan P. Newman ◽  
Matthew A. Wilson

AbstractLatent learning allows the brain the transform experiences into cognitive maps, a form of implicit memory, without reinforced training. Its mechanism is unclear. We tracked the internal states of the hippocampal neural ensembles and discovered that during latent learning of a spatial map, the state space evolved into a low-dimensional manifold that topologically resembled the physical environment. This process requires repeated experiences and sleep in-between. Further investigations revealed that a subset of hippocampal neurons, instead of rapidly forming place fields in a novel environment, remained weakly tuned but gradually developed correlated activity with other neurons. These ‘weakly spatial’ neurons bond activity of neurons with stronger spatial tuning, linking discrete place fields into a map that supports flexible navigation.


2018 ◽  
Vol 21 (5) ◽  
pp. 824-837 ◽  
Author(s):  
Jian Huang ◽  
Gordon McTaggart-Cowan ◽  
Sandeep Munshi

This article describes the application of a modified first-order conditional moment closure model used in conjunction with the trajectory-generated low-dimensional manifold method in large-eddy simulation of pilot ignited high-pressure direct injection natural gas combustion in a heavy-duty diesel engine. The article starts with a review of the intrinsic low-dimensional manifold method for reducing detailed chemistry and various formulations for the construction of such manifolds. It is followed by a brief review of the conditional moment closure method for modelling the interaction between turbulence and combustion chemistry. The high computational cost associated with the direct implementation of the basic conditional moment closure model was discussed. The article then describes the formulation of a modified approach to solve the conditional moment closure equation, whose reaction source terms for the conditional mass fractions for species were obtained by projecting the turbulent perturbation onto the reaction manifold. The main model assumptions were explained and the resulting limitations were discussed. A numerical experiment was conducted to examine the validity the model assumptions. The model was then implemented in a combustion computational fluid dynamics solver developed on an open-source computational fluid dynamics platform. Non-reactive jet simulations were first conducted and the results were compared to the experimental measurement from a high-pressure visualization chamber to verify that the jet penetration under engine relevant conditions was correctly predicted. The model was then used to simulate natural gas combustion in a heavy-duty diesel engine equipped with a high-pressure direct injection system. The simulation results were compared with the experimental measurement from a research engine to verify the accuracy of the model for both the combustion rate and engine-out emissions.


2020 ◽  
Vol 371 ◽  
pp. 108-123 ◽  
Author(s):  
Ruiqiang He ◽  
Xiangchu Feng ◽  
Weiwei Wang ◽  
Xiaolong Zhu ◽  
Chunyu Yang

2021 ◽  
Author(s):  
Mikhail Andronov ◽  
Maxim Fedorov ◽  
Sergey Sosnin

<div>Humans prefer visual representations for the analysis of large databases. In this work, we suggest a method for the visualization of the chemical reaction space. Our technique uses the t-SNE approach that is parameterized by a deep neural network (parametric t-SNE). We demonstrated that the parametric t-SNE combined with reaction difference fingerprints can provide a tool for the projection of chemical reactions onto a low-dimensional manifold for easy exploration of reaction space. We showed that the global reaction landscape, been projected onto a 2D plane, corresponds well with already known reaction types. The application of a pretrained parametric t-SNE model to new reactions allows chemists to study these reactions on a global reaction space. We validated the feasibility of this approach for two marketed drugs: darunavir and oseltamivir. We believe that our method can help explore reaction space and inspire chemists to find new reactions and synthetic ways. </div><div><br></div>


2019 ◽  
Author(s):  
Davide Spalla ◽  
Alexis Dubreuil ◽  
Sophie Rosay ◽  
Remi Monasson ◽  
Alessandro Treves

The way grid cells represent space in the rodent brain has been a striking discovery, with theoret-ical implications still unclear. Differently from hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute - using two alternative mathematical models - the storage capacity of a population of grid-like units, em-bedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the po-tential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple non-congruent metric rela-tionships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.


Sign in / Sign up

Export Citation Format

Share Document