Heat production and oxygen consumption following contraction of isolated rabbit papillary muscle at 20 °C

1987 ◽  
pp. 85-92
Author(s):  
F. Mast ◽  
G. Elzinga
1990 ◽  
Vol 259 (5) ◽  
pp. H1601-H1605 ◽  
Author(s):  
F. Mast ◽  
R. C. Woledge ◽  
G. Elzinga

Recovery heat production after contraction in rabbit papillary muscle at 20 degrees C occurs at an exponentially declining rate. The time constant describing this decline is 25 s; it is not different when 10 twitches or when a steady-state twitch train is studied, and it is unaltered by changing stimulus frequency from 0.125 to 0.2 Hz. The same value has previously been found after single twitches. If it is assumed that phosphocreatine (PCr) resynthesis is the cause of recovery heat production and that it occurs also during contractions at a rate proportional to the amount of PCr depletion, it is possible to divide the total heat production for any period of stimulation into that caused by this recovery process (R) and that caused by initial (I) processes (presumed to be PCr splitting). The value of R/I obtained by using this method is 1.10 +/- 0.04 (means +/- SE, n = 27 muscles), close to the theoretical value of 1.13. The correspondence between the measured and the predicted ratio supports the assumptions underlying the measurement. Thus in heart muscle the heat produced during and after contraction can be explained by PCr splitting and reformation. The older Bugnard method of analysis applied to the same data gives an R/I value of 1.5; the reasons for the discrepancy are described.


1982 ◽  
Vol 202 (3) ◽  
pp. 661-665 ◽  
Author(s):  
D G Clark ◽  
M Brinkman ◽  
O H Filsell ◽  
S J Lewis ◽  
M N Berry

(Na+ + K+)-dependent ATPase activity, heat production and oxygen consumption were increased by 59%, 62% and 75% respectively in hepatocytes from tri-iodothyronine-treated rats. Ouabain at concentrations of 1 and 10 mM decreased oxygen uptake by 2-8% in hepatocytes from euthyroid rats and by 5-15% in hepatocytes from hyperthyroid animals. Heat output was decreased by 4-9% with the glycoside in isolated liver parenchymal cells from the control animals and by 11% in the cells from the tri-iodothyronine-treated animals. These results do not support the hypothesis that hepatic (Na+ + K+)-ATPase plays a major role in increased heat production in hepatocytes from hyperthyroid rats.


1978 ◽  
Vol 54 (9) ◽  
pp. 565-568
Author(s):  
Yasutake SAEKI ◽  
Kouichi SHIOZAWA ◽  
Keiji YANAGISAWA

Sign in / Sign up

Export Citation Format

Share Document