scholarly journals Computable Quotient Presentations of Models of Arithmetic and Set Theory

Author(s):  
Michał Tomasz Godziszewski ◽  
Joel David Hamkins
1985 ◽  
Vol 50 (2) ◽  
pp. 375-379 ◽  
Author(s):  
Thomas J. Grilliot

One long-range objective of logic is to find models of arithmetic with noteworthy properties, perhaps properties that imply some long-standing number theoretic conjectures. In areas of mathematics such as algebra or set theory, new models are often made by extending old models, that is, by adjoining new elements to already existing models. Usually the extension retains most of the characteristics of the old model with at least one exception that makes the new model interesting. However, such a scheme is difficult in the area of arithmetic. Many interesting properties of the fine structure of arithmetic are diophantine and hence unchangeable in extensions. For instance, one cannot change a prime number into a composite one by adjoining new elements.One could possibly get around this diophantine difficulty in one of two ways. One way is to change the usual language of addition and multiplication to an equivalent language that does not transmit so much information to extensions. For instance, multiplication is definable from the squaring function, as one sees from the identity 2xy = (x + y)2 − x2 − y2, and the squaring function in turn is definable either from the unary square predicate (as one sees from the fact that n = m2 if n and n + 2m + 1 are successive squares) or from the divisor relation (as one sees from the fact that n = m2 if n is the smallest number such that m divides n and m + 1 divides n + m). Either of these two alternatives to multiplication might make for interesting extensions.


James H. Schmerl. Peano models with many generic classes. Pacific Journal of Mathematics, vol. 43 (1973), pp. 523–536. - James H. Schmerl. Correction to: “Peano models with many generic classes”. Pacific Journal of Mathematics, vol. 92 (1981), no. 1, pp. 195–198. - James H. Schmerl. Recursively saturated, rather classless models of Peano arithmetic. Logic Year 1979–80. Recursively saturated, rather classless models of Peano arithmetic. Logic Year 1979–80 (Proceedings, Seminars, and Conferences in Mathematical Logic, University of Connecticut, Storrs, Connecticut, 1979/80). edited by M. Lerman, J. H. Schmerl, and R. I. Soare, Lecture Notes in Mathematics, vol. 859. Springer, Berlin, pp. 268–282. - James H. Schmerl. Recursively saturatedmodels generated by indiscernibles. Notre Dane Journal of Formal Logic, vol. 26 (1985), no. 1, pp. 99–105. - James H. Schmerl. Large resplendent models generated by indiscernibles. The Journal of Symbolic Logic, vol. 54 (1989), no. 4, pp. 1382–1388. - James H. Schmerl. Automorphism groups of models of Peano arithmetic. The Journal of Symbolic Logic, vol. 67 (2002), no. 4, pp. 1249–1264. - James H. Schmerl. Diversity in substructures. Nonstandard models of arithmetic and set theory. edited by A. Enayat and R. Kossak, Contemporary Mathematics, vol. 361, American Mathematical Societey (2004), pp. 45–161. - James H. Schmerl. Generic automorphisms and graph coloring. Discrete Mathematics, vol. 291 (2005), no. 1–3, pp. 235–242. - James H. Schmerl. Nondiversity in substructures. The Journal of Symbolic Logic, vol. 73 (2008), no. 1, pp. 193–211.

2009 ◽  
Vol 15 (2) ◽  
pp. 222-227
Author(s):  
Roman Kossak

Author(s):  
Ernest Schimmerling
Keyword(s):  

Author(s):  
Daniel W. Cunningham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document