The potential for transatlantic cooperation in the International Space Station programme and space exploration

Author(s):  
Ian Pryke
2011 ◽  
Vol 133 (07) ◽  
pp. 46-53
Author(s):  
Burton Dicht

This article analyzes the decisions and technological challenges that drove the Space Shuttle’s development. The goal of the Shuttle program was to create a reusable vehicle that could reduce the cost of delivering humans and large payloads into space. Although the Shuttle was a remarkable flying machine, it never lived up to the goals of an airline-style operation with low operating costs. In January 2004, a year after the Columbia accident, President George W. Bush unveiled the “Vision for U.S. Space Exploration” to guide the U.S. space effort for the next two decades. A major component of the new vision, driven by the recommendations of the Columbia Accident Investigation Board, was to retire the Space Shuttle fleet as soon as the International Space Station assembly was completed. With cancellation of the Constellation program in 2010, the planned successor to the Shuttle, the U.S. space program is now in an era of uncertainty.


2020 ◽  
Author(s):  
Graham K. Shunk ◽  
Xavier R. Gomez ◽  
Nils J. H. Averesch

AbstractThe greatest hazard for humans on deep-space exploration missions is radiation. To protect astronauts venturing out beyond Earth’s protective magnetosphere and sustain a permanent presence on Moon and/or Mars, advanced passive radiation protection is highly sought after. Due to the complex nature of space radiation, there is likely no one-size-fits-all solution to this problem, which is further aggravated by up-mass restrictions. In search of innovative radiation-shields, biotechnology holds unique advantages such as suitability for in-situ resource utilization (ISRU), self-regeneration, and adaptability. Certain fungi thrive in high-radiation environments on Earth, such as the contamination radius of the Chernobyl Nuclear Power Plant. Analogous to photosynthesis, these organisms appear to perform radiosynthesis, using pigments known as melanin to convert gamma-radiation into chemical energy. It is hypothesized that these organisms can be employed as a radiation shield to protect other lifeforms. Here, growth of Cladosporium sphaerospermum and its capability to attenuate ionizing radiation, was studied aboard the International Space Station (ISS) over a time of 30 days, as an analog to habitation on the surface of Mars. At full maturity, radiation beneath a ≈ 1.7 mm thick lawn of the melanized radiotrophic fungus (180° protection radius) was 2.17±0.35% lower as compared to the negative control. Estimations based on linear attenuation coefficients indicated that a ∼ 21 cm thick layer of this fungus could largely negate the annual dose-equivalent of the radiation environment on the surface of Mars, whereas only ∼ 9 cm would be required with an equimolar mixture of melanin and Martian regolith. Compatible with ISRU, such composites are promising as a means to increase radiation shielding while reducing overall up-mass, as is compulsory for future Mars-missions.


2018 ◽  
Vol 40 (6) ◽  
pp. 10-13
Author(s):  
Aaron S. Burton

As humans seek to return to the Moon, and eventually to Mars and beyond, new challenges must be overcome to keep astronauts safe and healthy. This includes protecting crew members from harmful organisms in their environment, treating infections that may arise, monitoring nutrition and understanding how the human body adapts to spaceflight during missions that could last multiple years. Since the International Space Station (ISS) was first occupied in 2000, crew health has been monitored with thorough check-ups before and after flight, and the collection of many samples during flight that are brought back to Earth for analysis. During longer missions to more distant solar system locales, where returning samples to Earth is no longer practical, being able to analyse samples aboard the spacecraft could be very important.


Sign in / Sign up

Export Citation Format

Share Document