Sympathetic Influence on Intracranial Pressure Through Alterations in Cerebrospinal Fluid Production and Cerebral Blood Volume

1983 ◽  
pp. 203-212 ◽  
Author(s):  
Ch. Owman ◽  
M. Lindvall
1976 ◽  
Vol 34 (1-4) ◽  
pp. 287-294 ◽  
Author(s):  
A. L. Benabid ◽  
J. C. Persat ◽  
J. F. Piquard ◽  
M. Barge ◽  
J. P. Chirossel

1975 ◽  
Vol 43 (4) ◽  
pp. 385-398 ◽  
Author(s):  
Robert L. Grubb ◽  
Marcus E. Raichle ◽  
Michael E. Phelps ◽  
Robert A. Ratcheson

✓ The relationship of cerebral blood volume (CBV) to cerebral perfusion pressure (CPP), cerebral blood flow (CBF), and the cerebral metabolic rate for oxygen (CMRO2) was examined in rhesus monkeys. In vivo tracer methods employing radioactive oxygen-15 were used to measure CBV, CBF, and CMRO2. Cerebral perfusion pressure was decreased by raising the intracranial pressure (ICP) by infusion of artificial cerebrospinal fluid (CSF) into the cisterna magna. The production of progressive intracranial hypertension to an ICP of 70 torr (CPP of 40 torr) caused a rise in CBV accompanied by a steady CBF. With a further increase in ICP to 94 torr, CBV remained elevated without change while CBF declined significantly. Cerebral metabolic rate for oxygen did not change significantly during intracranial hypertension. For comparison, CPP was lowered by reducing mean arterial blood pressure in a second group of monkeys. Only CBF was measured in this group. In this second group of animals, the lower limit of CBF autoregulation was reached at a higher CPP (CPP ∼ 80 torr) than when an increase in ICP was employed (CPP ∼ 30 torr).


1997 ◽  
Vol 82 (4) ◽  
pp. 1270-1282 ◽  
Author(s):  
M. Ursino ◽  
C. A. Lodi ◽  
S. Rossi ◽  
N. Stocchetti

Ursino, M., C. A. Lodi, S. Rossi, and N. Stocchetti.Intracranial pressure dynamics in patients with acute brain damage. J. Appl. Physiol. 82(4): 1270–1282, 1997.—The time pattern of intracranial pressure (ICP) during pressure-volume index (PVI) tests was analyzed in 20 patients with severe acute brain damage by means of a simple mathematical model. In most cases, a satisfactory fitting between model response and patient data was achieved by adjusting only four parameters: the cerebrospinal fluid (CSF) outflow resistance, the intracranial elastance coefficient, and the gain and time constant of cerebral autoregulation. The correlation between the parameter estimates was also analyzed to elucidate the main mechanisms responsible for ICP changes in each patient. Starting from information on the estimated parameter values and their correlation, the patients were classified into two main classes: those with weak autoregulation (8 of 20 patients) and those with strong autoregulation (12 of 20 patients). In the first group of patients, ICP mainly reflects CSF circulation and passive cerebral blood volume changes. In the second group, ICP exhibits paradoxical responses attributable to active changes in cerebral blood volume. Moreover, in two patients of the second group, the time constant of autoregulation is significantly increased (>40 s). The correlation between the parameter estimates was significantly different in the two groups of patients, suggesting the existence of different mechanisms responsible for ICP changes. Moreover, analysis of the correlation between the parameter estimates might give information on the directions of parameter changes that have a greater impact on ICP.


Author(s):  
Alexander Gamble ◽  
Harold Rekate

Hydrocephalus is a condition characterized by a dynamic imbalance between the formation (production) and absorption of spinal fluid resulting in an increase in the size of the ventricular spaces. New techniques used to study the chemistry and physics of cerebrospinal fluid production, flow and absorption have led to new insights into the pathophysiology of hydrocephalus and other abnormalities of cerebrospinal fluid (CSF) dynamics. The importance of research into the role of aquaporins, other channel types and absorption of CSF into the systemic circulation via the lymphatics and intraparenchymal veins opens alternative explanations for enigmatic disorders of CSF. A contemporary classification of hydrocephalus based on the point of restriction of CSF flow has been shown to explain all problems related to clinical disorders of CSF and intracranial pressure. The distinct differences between hydrocephalus which develops in babies with growing heads and those that become symptomatic later in life.


Sign in / Sign up

Export Citation Format

Share Document