Measuring the Degree of Dynamic Complexity in Differential Equation Simulation Models

Author(s):  
Stefan N. Grösser
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Hengguo Yu ◽  
Min Zhao

On the basis of the theories and methods of ecology and ordinary differential equation, a seasonally perturbed prey-predator system with the Beddington-DeAngelis functional response is studied analytically and numerically. Mathematical theoretical works have been pursuing the investigation of uniformly persistent, which depicts the threshold expression of some critical parameters. Numerical analysis indicates that the seasonality has a strong effect on the dynamical complexity and species biomass using bifurcation diagrams and Poincaré sections. The results show that the seasonality in three different parameters can give rise to rich and complex dynamical behaviors. In addition, the largest Lyapunov exponents are computed. This computation further confirms the existence of chaotic behavior and the accuracy of numerical simulation. All these results are expected to be of use in the study of the dynamic complexity of ecosystems.


1998 ◽  
Vol 1 (01) ◽  
pp. 5-11 ◽  
Author(s):  
N.G. Saleri

Summary Managing complexity and technological complexification is a necessity in today's business environment. This paper outlines a method to increase value addition significantly by multidisciplinary reservoir studies. In this context, value addition refers to a positive impact on a business decision. The approach ensures a level of complexification in line both with business questions at hand and the realities of reservoirs. Sparse well control, seismic uncertainties, imperfect geologic models, time constraints, software viruses, and computing hardware limitations represent some common reservoir realities. The process model detailed in the paper uses these apparent shortcomings to moderate (i.e., guide) the level of complexification. Several project examples illustrate the implementation of the process model. The paper is an extension of three previous investigations1–3 that deal with issues of method and uncertainty in reservoir-performance forecasting. Introduction Multidisciplinary teams and data have become the standard 1990's methods to address large-scale reservoir-management issues. Concurrently, reservoir simulation has assumed the role as a "knowledge manager" of ever-growing quantities of information. The paper pursues three basic questions:How can we maximize the value added from integrated reservoir studies,How can we achieve a pragmatic balance between business objectives/timetables and problem complexification, andHow best can we use the technology dividend provided by the explosion of computing power Primarily because of their size, Saudi Arabian fields amplify the significance of these three questions. What has emerged is the realization that reservoir simulation needs to provide a proper demarcation between scientific and business objectives to remain business-relevant. The discussion that follows consists of two main parts. First, we present an analysis of complexity in general and reservoir systems in particular. This is followed by a process model (i.e., parallel planning plus) and a set of principles that link business needs, reservoir realities, and simulation in the context of multidisciplinary studies. The following definitions will facilitate the discussion that follows. Complex (adjective): Composed of interconnected parts. Complexity: The state of being intricate. The degree of interconnection among various parts. Complexification: The process of adding incremental levels of complexity to a system. Detail vs. Dynamic Complexity A vast array of multisourced information makes up reservoir systems (Fig. 1). Reservoir simulation is our attempt to link the "detail complexity" of such a system to the "dynamic complexity"4,5 expected in business decisions. In this regard, a systems engineering perspective to reservoir management is very relevant. Senge4 defines two types of complexity: detail and dynamic. Detail complexity entails defining individual ingredients in fine detail, while dynamic complexity refers to the dynamic, often unpredictable, outcomes of the interactions of the individual components. Senge4 states that "the real leverage in most management situations lies in understanding dynamic complexity, not detail complexity." This is precisely true for many of the questions facing reservoir-management project teams in the industry. When to initiate an EOR project or pattern realignment or how to develop a field are typical dynamic complexity problems. Relative-permeability data, field-management strategies, or wellbore hydraulics are examples of detail complexity. Geologic, geostatistical, and reservoir-simulation models are also examples of detail complexity, but represent higher orders of organization. Interestingly, reservoir-simulation models have a dual function: first, as an organizer of detail complexity, and, second, as a tool for interpreting dynamic complexity (a distinction from geologic models). Technological complexification is the process of adding incremental levels of detail complexity to a system to represent its dynamic complexity more rigorously. Each one of the components depicted in Fig. 1 offers an avenue of complexification. Perhaps ironically, every component also carries an element of uncertainty. New technologies are adding significantly to the detail complexity available to multidisciplinary teams. One can see that advances in computing technology, for instance, play a role in the cycle of complexification that Fig. 2 shows. As we acquire more computing power, we can build more complex models, which will further delineate the questions being addressed, calling for more computing power, and so on. The real question, however, is whether we are in fact getting a better answer to the questions posed. Or, alternatively, are we making a difference? Multidisciplinary studies are vulnerable to the tendency towards maximal detail complexity. As one of the constituent disciplines (e.g., seismic, geostatistics) produces a more detailed reservoir representation, the pressure mounts for the other disciplines to match the level of complexification in their respective areas. However, for many reservoir problems, we may have a nonlinear relationship between dynamic and detail complexity (Fig. 3). As the number of detail complexity elements rise, the number of interactions among the elements proliferate. Any one of these interactions can be a show stopper. For example, reservoir-simulation models constructed at the detail level (i.e., scale) of geocellular models can become numerically unstable or prohibitively central-processing-unit (CPU) intensive - either way, a nonsolution. Complexification vs. Error Expectations The reservoir system depicted in Fig. 1 does not represent a controlled data environment; i.e., we are not operating in a setting where we can control the quality and quantity (sufficiency) of data. Therefore, in reservoir systems, the concept of "garbage in/garbage out," when taken literally, is an oxymoron. There is always some contamination (error or uncertainty) in one of the detail complexity elements. Thus, we need to redefine our mission as "given the data environment as is, what is an acceptable error, and what is an appropriate level of complexification?"


2016 ◽  
Vol 39 (5) ◽  
pp. 521-545 ◽  
Author(s):  
Stephen Fox

Purpose For several decades, national culture has been described as having major influence over international business outcomes. Yet national culture has been framed often by vague terms and simplistic scales. The purpose of this paper is to explain why and how the influence of national culture should be reframed. Design/methodology/approach Review of literature concerned with causation in the behaviour of individuals and groups: anthropology, cognition, psychology, cross-cultural psychology, cultural psychology and cultural geography. Findings Within every nationality, and across international business, there is dynamic complexity of thought and action among individuals and groups. This derives from differences of genders, age, cultures, personality types and past experiences; the highly complex interactions between them; their commingling with common traits; and the varying influence of contextual factors. This dynamic complexity cannot be addressed by managers through use of vague simplistic conceptualizations of national culture. Practical implications As an alternative to vague simplistic conceptualizations, scientific theories, such as resource-based theory, knowledge-based view, contagion theories and social cognition theory, can be referred to in the formulation of multi-resolution simulation models. These models can enable managers to analyze dynamic complex international business scenarios, in terms of situation-specific variables. Originality/value The originality of this paper is that it provides a detailed explanation of why vague simplistic conceptualizations of national culture are of limited usefulness to managers of international business. The value of this paper is that it describes a practical alternative: theory-based multi-resolution simulation models.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


Sign in / Sign up

Export Citation Format

Share Document