Environmental Sound Perception in Patients with Cochlear Implants Compared with That in Patients with Auditory Nerve Diseases (Auditory Neuropathy) and Cortical Deafness

Author(s):  
Kimitaka Kaga ◽  
Yusuke Akamatsu
2004 ◽  
Vol 5 (S1) ◽  
pp. 90-92
Author(s):  
Kimitaka Kaga ◽  
Yusuke Akamatsu ◽  
Erika Ogata ◽  
Masae Shiroma ◽  
Sinichi Ishimoto ◽  
...  

2002 ◽  
Vol 111 (5_suppl) ◽  
pp. 29-31 ◽  
Author(s):  
Yvonne S. Sininger ◽  
Patricia Trautwein

Auditory neuropathy (AN) is a term used to describe an auditory disorder in which there is evidence of normal outer hair cell function (otoacoustic emissions and/or cochlear microphonics) and poor function of the auditory nerve (absent or highly distorted auditory brain stem response starting with wave I). Many of these patients have evidence of generalized peripheral nerve disease, leading to an assumption that the peripheral portion of the auditory nerve is the most likely site of lesion. A small group of these patients has received cochlear implants, and the majority of them achieve average to above-average performance. Although this outcome may seem incongruous with neural disease, average performance by patients with AN may be a result of the reintroduction of neural synchrony by electrical stimulation and/or the fact that most deaf patients have poor nerve survival. Although cochlear implants are promising for deaf patients with AN, more study of the disorder is needed.


2004 ◽  
Vol 5 (sup1) ◽  
pp. 90-92 ◽  
Author(s):  
Kimitaka Kaga ◽  
Yusuke Akamatsu ◽  
Erika Ogata ◽  
Masae Shiroma ◽  
Sinichi Ishimoto ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
pp. e1008499
Author(s):  
Maral Budak ◽  
Karl Grosh ◽  
Aritra Sasmal ◽  
Gabriel Corfas ◽  
Michal Zochowski ◽  
...  

Hidden hearing loss (HHL) is an auditory neuropathy characterized by normal hearing thresholds but reduced amplitudes of the sound-evoked auditory nerve compound action potential (CAP). In animal models, HHL can be caused by moderate noise exposure or aging, which induces loss of inner hair cell (IHC) synapses. In contrast, recent evidence has shown that transient loss of cochlear Schwann cells also causes permanent auditory deficits in mice with similarities to HHL. Histological analysis of the cochlea after auditory nerve remyelination showed a permanent disruption of the myelination patterns at the heminode of type I spiral ganglion neuron (SGN) peripheral terminals, suggesting that this defect could be contributing to HHL. To shed light on the mechanisms of different HHL scenarios observed in animals and to test their impact on type I SGN activity, we constructed a reduced biophysical model for a population of SGN peripheral axons whose activity is driven by a well-accepted model of cochlear sound processing. We found that the amplitudes of simulated sound-evoked SGN CAPs are lower and have greater latencies when heminodes are disorganized, i.e. they occur at different distances from the hair cell rather than at the same distance as in the normal cochlea. These results confirm that disruption of heminode positions causes desynchronization of SGN spikes leading to a loss of temporal resolution and reduction of the sound-evoked SGN CAP. Another mechanism resulting in HHL is loss of IHC synapses, i.e., synaptopathy. For comparison, we simulated synaptopathy by removing high threshold IHC-SGN synapses and found that the amplitude of simulated sound-evoked SGN CAPs decreases while latencies remain unchanged, as has been observed in noise exposed animals. Thus, model results illuminate diverse disruptions caused by synaptopathy and demyelination on neural activity in auditory processing that contribute to HHL as observed in animal models and that can contribute to perceptual deficits induced by nerve damage in humans.


1983 ◽  
Vol 405 (1 Cochlear Pros) ◽  
pp. 94-113 ◽  
Author(s):  
Murray B. Sachs ◽  
Eric D. Young ◽  
Michael I. Miller

2015 ◽  
Vol 58 (2) ◽  
pp. 509-519 ◽  
Author(s):  
Valeriy Shafiro ◽  
Stanley Sheft ◽  
Sejal Kuvadia ◽  
Brian Gygi

Purpose The study investigated the effect of a short computer-based environmental sound training regimen on the perception of environmental sounds and speech in experienced cochlear implant (CI) patients. Method Fourteen CI patients with the average of 5 years of CI experience participated. The protocol consisted of 2 pretests, 1 week apart, followed by 4 environmental sound training sessions conducted on separate days in 1 week, and concluded with 2 posttest sessions, separated by another week without training. Each testing session included an environmental sound test, which consisted of 40 familiar everyday sounds, each represented by 4 different tokens, as well as the Consonant Nucleus Consonant (CNC) word test, and Revised Speech Perception in Noise (SPIN-R) sentence test. Results Environmental sounds scores were lower than for either of the speech tests. Following training, there was a significant average improvement of 15.8 points in environmental sound perception, which persisted 1 week later after training was discontinued. No significant improvements were observed for either speech test. Conclusions The findings demonstrate that environmental sound perception, which remains problematic even for experienced CI patients, can be improved with a home-based computer training regimen. Such computer-based training may thus provide an effective low-cost approach to rehabilitation for CI users, and potentially, other hearing impaired populations.


2020 ◽  
Vol 21 (22) ◽  
pp. 8511
Author(s):  
Kiran Kumar Sriperumbudur ◽  
Revathi Appali ◽  
Anthony W. Gummer ◽  
Ursula van Rienen

Sensorineural deafness is caused by the loss of peripheral neural input to the auditory nerve, which may result from peripheral neural degeneration and/or a loss of inner hair cells. Provided spiral ganglion cells and their central processes are patent, cochlear implants can be used to electrically stimulate the auditory nerve to facilitate hearing in the deaf or severely hard-of-hearing. Neural degeneration is a crucial impediment to the functional success of a cochlear implant. The present, first-of-its-kind two-dimensional finite-element model investigates how the depletion of neural tissues might alter the electrically induced transmembrane potential of spiral ganglion neurons. The study suggests that even as little as 10% of neural tissue degeneration could lead to a disproportionate change in the stimulation profile of the auditory nerve. This result implies that apart from encapsulation layer formation around the cochlear implant electrode, tissue degeneration could also be an essential reason for the apparent inconsistencies in the functionality of cochlear implants.


1989 ◽  
Vol 32 (4) ◽  
pp. 887-911 ◽  
Author(s):  
Richard S. Tyler ◽  
Brian C. J. Moore ◽  
Francis K. Kuk

The main purpose of this study was to provide an independent corroboration of open-set word recognition in some of the better cochlear-implant patients. These included the Chorimac, Nucleus (one group from the U.S.A. and one group from Hannover, Germany), Symbion, Duren/Cologne and 3M/Vienna implants. Three experiments are reported: (1) word recognition in word lists and in sentences; (2) environmental sound perception, and (3) gap detection. On word recognition, the scores of 6 Chorimac patients averaged 2.5% words and 0.7% words in sentences correct in the French tests. In the German tests, the scores averaged 17% words and 10% words in sentences for 10 Duren/Cologne patients, 15% words and 16% words in sentences for 9 3M/Vienna patients, and 10% words and 16% words in sentences (3% to 26%) for 10 Nucleus/Hannover patients. In the English tests, the scores averaged 11% words and 29.6% words in sentences for l0 Nucleus-U.S.A. patients, and 13.7% words and 35.7% words in sentences for the 9 Symbion patients. The ability to recognize recorded environmental sounds was measured with a closed set of 18 sounds. Performance averaged 23% correct for Chorimac patients, 41% correct for 3M/Vienna patients, 44% correct for Nucleus/Hannover patients, 21% correct for Duren/Cologne patients, 58% correct for Nucleus/U.S.A. patients, and 83% correct for Symbion patients. A multidimensional scaling analysis suggested that patients were, in part, utilizing information about the envelope and about the periodic/aperiodic nature of some of the sounds. Gap detection thresholds with a one-octave wide noise centered at 500 Hz varied widely among patients. Typically, patients with gap thresholds less than 40 ms showed a wide range of performance on speech perception tasks, whereas patients with gap-detection thresholds greater than 40 ms showed poor word recognition skills.


Sign in / Sign up

Export Citation Format

Share Document