Kinetics of Complex Plasmas with Uniform Size Dust

Author(s):  
Mahendra Singh Sodha
2010 ◽  
Vol 105 (4) ◽  
Author(s):  
A. Wysocki ◽  
C. Räth ◽  
A. V. Ivlev ◽  
K. R. Sütterlin ◽  
H. M. Thomas ◽  
...  

Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1572-1576 ◽  
Author(s):  
TL Fabry

Unstirred suspensions of erythrocytes form stable spherical aggregates of uniform size. The radius of the spheres depends upon the suspending medium and the hematocrit. Erythrocyte suspensions will undergo sedimentation only after these aggregates are formed. Aggregation is a two-step process: first, erythrocytes associate in long chains (rouleau formation). Next, these chains form spheres of uniform size. The requirements for this well-defined process are an electrolyte and a neutral or negatively charged macromolecule in the solution and a metabolically active red cell. If these conditions are not met, red cells either will not aggregate at all or will form amorphous aggregates. Rouleau formation and sedimentation are inhibited by 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid, an inhibitor of anion transport, but not by ouabain, a cation transport inhibitor. The kinetics of erythrocyte sedimentation reflects the aforementioned mechanism: no sedimentation occurs during rouleau formation. Once the spheres of uniform size are formed, they will settle according to the Einstein-Stokes equation. In this model, parameters of sedimentation kinetics are the delay before sedimentation starts, the rate of sedimentation in the steady state, and the radius of the sedimenting aggregate. The radius can be calculated from the rate of fall of the aggregates and agrees well with the microscopically observed radius. It is inversely proportional to the hematocrit, which explains the elevated sedimentation rates in anemia.


2005 ◽  
Vol 900 ◽  
Author(s):  
Jeong-Mi Moon ◽  
Alexander Wei

ABSTRACTAu nanorod arrays were grown by electrodeposition in Au-backed nanoporous alumina templates modified with polyethylenimine (PEI) as an adhesion layer. By varying the concentration and molecular weight of PEI, the length of nanorod arrays could be finely controlled. The local length distribution was extremely narrow with relative standard deviations on the order of 2% for rod lengths from 700 nm to 17 microns. The uniform growth rate appears to be determined by the adsorbed PEI matrix, which controls the growth kinetics of the grains comprising the nanorods. Templates coated with poly(acrylic acid) did not impart fine control in nanorod growth. The nanorods could also be thermally annealed within the template and released as monodisperse particles of uniform size.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1572-1576 ◽  
Author(s):  
TL Fabry

Abstract Unstirred suspensions of erythrocytes form stable spherical aggregates of uniform size. The radius of the spheres depends upon the suspending medium and the hematocrit. Erythrocyte suspensions will undergo sedimentation only after these aggregates are formed. Aggregation is a two-step process: first, erythrocytes associate in long chains (rouleau formation). Next, these chains form spheres of uniform size. The requirements for this well-defined process are an electrolyte and a neutral or negatively charged macromolecule in the solution and a metabolically active red cell. If these conditions are not met, red cells either will not aggregate at all or will form amorphous aggregates. Rouleau formation and sedimentation are inhibited by 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid, an inhibitor of anion transport, but not by ouabain, a cation transport inhibitor. The kinetics of erythrocyte sedimentation reflects the aforementioned mechanism: no sedimentation occurs during rouleau formation. Once the spheres of uniform size are formed, they will settle according to the Einstein-Stokes equation. In this model, parameters of sedimentation kinetics are the delay before sedimentation starts, the rate of sedimentation in the steady state, and the radius of the sedimenting aggregate. The radius can be calculated from the rate of fall of the aggregates and agrees well with the microscopically observed radius. It is inversely proportional to the hematocrit, which explains the elevated sedimentation rates in anemia.


Sign in / Sign up

Export Citation Format

Share Document