monodisperse particles
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7378
Author(s):  
Irena Maliszewska

Due to the unusual properties of gold nanoparticles, these structures are widely used in medicine and biology. This paper describes for the first time the synthesis of colloidal gold nanoparticles by the cell-free filtrate obtained from the Coriolus versicolor biomass and the use of these biogenic nanostructures to increase the photosensitizing efficiency of di- (AlPcS2) and tetrasulfonated (AlPcS4) hydroxyaluminum phthalocyanines in antibacterial photodynamic therapy. The obtained monodisperse particles were extremely stable, and this remarkable stability was due to the presence of phosphoprotein as a capping agent. The studied gold nanoparticles had a spherical shape, were uniformly distributed, and were characterized by a single plasmon band at wavelength of 514–517 nm. Almost 60% of the gold particles were found to be in the range of 13 to 15 nm. In accordance with the regulations of the American Microbiological Society, indicating that any antimicrobial technique must kill at least 3 log CFU (99.9%) to be accepted as “antimicrobial”, this mortality of Staphylococcus aureus was shown to be achieved in the presence of AlPcS4 + AuNPs mixture and 4.8 J cm−2 light dose compared to AlPcS4 alone, which required a light dose of 24 J cm−2. The best effect of increasing the effectiveness of combating this pathogen was observed in the case of AlPcS2 + AuNPs as a photosensitizing mixture. The light dose of 24 J cm−2 caused a lethal effect of the studied coccus in the planktonic culture.


2021 ◽  
Author(s):  
Emanuela Sartori ◽  
Marta Campolucci ◽  
Dmitry Baranov ◽  
Min Zeng ◽  
Stefano Toso ◽  
...  

Layered double perovskite are currently investigated as emerging halide-based materials for optoelectronic applications. Herein, we present the synthesis of Cs4MnxCd1-xSb2Cl12 (0 ≤ x ≤ 1) nanocrystals (NCs). X-ray powder diffraction evidences the retaining of the same crystal structure for all the inspected composition; transmission electron microscopy revealed monodisperse particles with a mean size of 10.6 nm. The absorption spectra seem to be mostly determined by transitions related to Sb3+, whereas Mn2+ induced a red emission in the 625 – 650 nm range. The emission intensity and position varies with the Mn2+ content and reaches the maximum for the composition with x = 0.12. Finally, we demonstrated that the photoluminescence quantum yield (PLQY) of the latter NCs was boosted from 0.3% to 3.9% through a post-synthesis treatment. The present work enlarges the knowledge of colloidal layered double perovskite nanocrystals, stimulating future investigations of this emerging class of material.


2021 ◽  
Vol 118 (33) ◽  
pp. e2107241118
Author(s):  
Carla Fernández-Rico ◽  
Roel P. A. Dullens

Self-assembly of microscopic building blocks into highly ordered and functional structures is ubiquitous in nature and found at all length scales. Hierarchical structures formed by colloidal building blocks are typically assembled from monodisperse particles interacting via engineered directional interactions. Here, we show that polydisperse colloidal bananas self-assemble into a complex and hierarchical quasi–two-dimensional structure, called the vortex phase, only due to excluded volume interactions and polydispersity in the particle curvature. Using confocal microscopy, we uncover the remarkable formation mechanism of the vortex phase and characterize its exotic structure and dynamics at the single-particle level. These results demonstrate that hierarchical self-assembly of complex materials can be solely driven by entropy and shape polydispersity of the constituting particles.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3302
Author(s):  
Charlotte A. Henshaw ◽  
Adam A. Dundas ◽  
Valentina Cuzzucoli Crucitti ◽  
Morgan R. Alexander ◽  
Ricky Wildman ◽  
...  

Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polymeric surfactants. Here, micropipette manipulation methods were used to optimise the concentration of bespoke polymeric surfactants to produce biodegradable (poly(d,l-lactic acid) (PDLLA)) microparticles with unique, bio-instructive surface chemistries. The effect of these three-dimensional surfactants on the interfacial tension of the system was analysed. It was determined that to provide adequate stabilisation, a low level (0.1% (w/v)) of poly(vinyl acetate-co-alcohol) (PVA) was required. Optimisation of the PVA concentration was informed by micropipette manipulation. As a result, successful, monodisperse particles were produced that maintained the desired bio-instructive surface chemistry.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2576
Author(s):  
Zhuo Chen ◽  
Fangya Guo ◽  
Youxiang Zhang

Ni-rich cathode LiNixCoyMn1-x-yO2 (NCM, x ≥ 0.5) materials are promising cathodes for lithium-ion batteries due to their high energy density and low cost. However, several issues, such as their complex preparation and electrochemical instability have hindered their commercial application. Herein, a simple solvothermal method combined with calcination was employed to synthesize LiNi0.6Co0.2Mn0.2O2 with micron-sized monodisperse particles, and the influence of the sintering temperature on the structures, morphologies, and electrochemical properties was investigated. The material sintered at 800 °C formed micron-sized particles with monodisperse characteristics, and a well-order layered structure. When charged–discharged in the voltage range of 2.8–4.3 V, it delivered an initial discharge capacity of 175.5 mAh g−1 with a Coulombic efficiency of 80.3% at 0.1 C, and a superior discharge capacity of 135.4 mAh g−1 with a capacity retention of 84.4% after 100 cycles at 1 C. The reliable electrochemical performance is probably attributable to the micron-sized monodisperse particles, which ensured stable crystal structure and fewer side reactions. This work is expected to provide a facile approach to preparing monodisperse particles of different scales, and improve the performance of Ni-rich NCM or other cathode materials for lithium-ion batteries.


2021 ◽  
Vol 30 (2) ◽  
pp. 15-22
Author(s):  
N. L. Poletaev

Introduction. It is accepted that the depth of heating of the dust/gas/air mixture by the radiation of combustion products SR is equal to the length LR of the free path of radiation in the mixture. Numerical simulation of combustion of a gas-air mixture that has inert particles, taking into account the re-radiation of heat by heated particles of the fresh mixture, led to ratio SR >> LR. In this work, the analytical assessment of ratio χS = SR/LR is performed.One-dimensional problem model. The co-authors determined stationary temperature distribution over the flow of initially cold monodisperse particles suspended in vacuum. Particle velocity V is directed toward a heat-radiating, absolutely black surface that is permeable by particles. Simplifying assumptions are used: radiation consists of two oppositely-directed flows of electromagnetic energy; interaction between particles and radiation is described in the approximation of geometric optics; the temperature inside the particle is the same. Problem solving. It is shown that χS is determined by V=Vcp / (εT 0,5, σTb)3 , where cp, εT, σ, Tb are, respectively, heat capacity per unit volume of the suspended matter, integral emissivity of the particle material, the Stefan-Boltzmann constant, and the surface temperature. For ≤ 2.8, re-emission can be neglected: χS ≈ 1. At ≤ 1.2, temperature distribution regulates re-emission: χS ≈ 5 –1/(2 – εT) >> 1.Solution discussion. The analytical solution satisfactorily describes the available numerical solutions and experimental data for the case of combustion of a dust/gas/air mixture after specifying the parameters of a simplified model: the radiating surface should be understood as the flame front, Tb is the combustion temperature, and cp is the overall heat capacity of the mixture. The estimate ≤ 1.2 indicates the final high temperature of the gas suspension, the possibility of its autoignition far from the flame, and the need to change initial assumptions when simulating re-emission.Conclusions. Analytical evaluations make it possible to employ ratios SR >> LR and SR ≈ LR for the suspension over a thermal radiation source in vacuum. Conditions for the application of the results of simplified simulation of re-emission to the combustion of a dust/gas/air mixture are formulated.


Author(s):  
Ivan V. Nemtsev ◽  
Olga V. Shabanova

The article was prepared based on the materials of the report at the first All-Russian scientific conference with international participation "YENISEI PHOTONICS – 2020". Photonic crystals are structures that have a spatial architecture with a periodically changing complex dielectric function at scales comparable to the wavelengths of light in the visible frequency range. The purpose of this study is to obtain three-dimensional photonic crystals by self-assembly from submicron spherical monodisperse particles of polymethylmethacrylate in dispersion media with different viscosities


2021 ◽  
Vol 249 ◽  
pp. 09001
Author(s):  
Thijmen Hagen ◽  
Stefan Luding ◽  
Devaraj van der Meer ◽  
Vanessa Magnanimo ◽  
Ahmed Jarray

In partially wet granular beds, liquid migrates between particles due to collisions and contacts. This, in turn, influences the flow behaviour of the granular bed. We investigate liquid redistribution in moving monodisperse particles in a rotating drum using Discrete Element Method (DEM) simulations. For weak capillary forces, liquid re-distribution, induced by the continuous flow of particles, leads to concentration of the liquid in the core of the bed, where the flow is quasi-static. High capillary forces reduce the surface flow speed and granular temperature. This decreases liquid bridges rupturing in the flowing layer, allowing the liquid to remain in the outer region of the bed.


2020 ◽  
Vol 57 (10) ◽  
pp. 1484-1496
Author(s):  
S.P. Coombs ◽  
A. Apostolov ◽  
W.A. Take ◽  
J. Benoît

Highly instrumented particles (i.e., “smart rocks”) were included in monodisperse dry granular landslide experiments to quantify the collisional nature of such flows and to investigate the influence of collisional flow on the mobility of landslides. The total number of particles comprising a constant source volume of 0.4 m3 was varied by filling the volume with monodisperse particles of nominal diameters of 3, 6, 13 or 25 mm. Successively raising the total particle count resulted in flows that were increasingly thick relative to the respective particle size. Raw resultant acceleration data from the embedded smart rock sensors indicate that for each increase in grain size, there were increases in both the magnitude and frequency of particle collisions. Light detection and ranging (LiDAR)-generated point clouds of the landslide deposits indicated that increases in mobility and spreading, compared using differences in travel angle, were directly proportional to increases in collisional activity. By changing the size of the landslide particles from 3 to 25 mm, the travel angle at the gravity centre (αg) was observed to decrease from 27.8° to 25.3° (Δαg = −9.0%) and the Fahrböschung angle (α) was observed to decrease from 25.0° to 21.4° (Δα = −14.4%).


2020 ◽  
Author(s):  
Tae Joon Kwak ◽  
Huihun Jung ◽  
Benjamin D Allen ◽  
Melik C Demirel ◽  
Woo-Jin Chang

AbstractRecently, insoluble protein particles have been increasingly investigated for artificial drug delivery systems due to their favorable properties, including programmability for active drug targeting of diseases as well as their biocompatibility and biodegradability after administration. One of the biggest challenges is selectively collecting monodisperse particles in desirable morphologies and sizes to enable consistent levels and rates of drug loading and release. Therefore, technology that allows sorting of protein particles with respect to size and morphology will enhance the design and production of next-generation drug delivery materials. Here, we introduce a dielectrophoretic (DEP) separation technique to selectively isolate spherical protein particles from a mixture of randomly shaped particles. We tested this approach by applying it to a mixture of precipitated squid ring teeth inspired tandem repeat protein particles with diverse sizes and morphologies. The DEP trapping system enabled us to isolate specific-sized, spherical protein particles out of this mixture: after separation, the fraction of 2 μm and 4 μm spherical particles was increased from 28.64% of mixture to 80.53% and 74.02% with polydispersity indexes (PDIs) decreased from 0.93 of mixture to 0.19 and 0.09, respectively. The protein particles show high aqueous swelling capability (up to 74% by mass) that could enable delivery of drug solutions. This work is intended to inspire the future development of biocompatible drug-delivery systems.


Sign in / Sign up

Export Citation Format

Share Document