Effective Speech Signal Reconstruction Technique Using Empirical Mode Decomposition Under Various Conditions

Author(s):  
Nisha Goswami ◽  
Mousmita Sarma ◽  
Kandarpa Kumar Sarma
Author(s):  
Palani Thanaraj Krishnan ◽  
Alex Noel Joseph Raj ◽  
Vijayarajan Rajangam

A correction to this paper has been published: https://doi.org/10.1007/s40747-021-00377-y


2011 ◽  
Vol 121-126 ◽  
pp. 815-819 ◽  
Author(s):  
Yu Qiang Qin ◽  
Xue Ying Zhang

Ensemble empirical mode decomposition(EEMD) is a newly developed method aimed at eliminating mode mixing present in the original empirical mode decomposition (EMD). To evaluate the performance of this new method, this paper investigates the effect of two parameters pertinent to EEMD: the emotional envelop and the number of emotional ensemble trials. At the same time, the proposed technique has been utilized for four kinds of emotional(angry、happy、sad and neutral) speech signals, and compute the number of each emotional ensemble trials. We obtain an emotional envelope by transforming the IMFe of emotional speech signals, and obtain a new method of emotion recognition according to different emotional envelop and emotional ensemble trials.


2013 ◽  
Vol 51 (7) ◽  
pp. 811-821 ◽  
Author(s):  
Muhammad Kaleem ◽  
Behnaz Ghoraani ◽  
Aziz Guergachi ◽  
Sridhar Krishnan

2021 ◽  
Author(s):  
Prashant Kumar Sahu ◽  
Rajiv Nandan Rai

Abstract The vibration signals for rotating machines are generally polluted by excessive noise and can lose the fault information at the early development phase. In this paper, an improved denoising technique is proposed for early faults diagnosis of rolling bearing based on the complete ensemble empirical mode decomposition (CEEMD) and adaptive thresholding (ATD) method. Firstly, the bearing vibration signals are decomposed into a set of various intrinsic mode functions (IMFs) using CEEMD algorithm. The IMFs grouping and selection are formed based upon the correlation coefficient value. The noise-predominant IMFs are subjected to adaptive thresholding for denoising and then added to the low-frequency IMFs for signal reconstruction. The effectiveness of the proposed method denoised signals are measured based on kurtosis value and the envelope spectrum analysis. The presented method results on experimental datasets illustrate that the proposed approach is an effective denoising technique for early fault detection in the rolling bearing.


Proceedings ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 11 ◽  
Author(s):  
Huichao Yan ◽  
Linmei Zhang

Underwater acoustic technology is a major method in current ocean research and exploration, which support the detection of seabed environment and marine life. However, the detection accuracy is directly affected by the quality of underwater acoustic signals collected by hydrophones. Hydrophones are efficient and important tools for collecting underwater acoustic signals. The collected signals of hydrophone often contain lots kinds of noise as the work environment is unknown and complex. Traditional signal denoising methods, such as wavelet analysis and empirical mode decomposition, product unsatisfied results of denoising. In this paper, a denoising method combining wavelet threshold processing and empirical mode decomposition is proposed, and correlation analysis is added in the signal reconstruction process. Finally, the experiment proves that the proposed denoising method has a better denoising performance. With the employment of the proposed method, the underwater acoustic signals turn smoothly and the signal drift of the collected hydroacoustic signal is improved. Comparing the signal spectrums of other methods, the spectral energy of the proposed denoising method is more concentrated, and almost no energy attenuation occurred.


Sign in / Sign up

Export Citation Format

Share Document