Farming Systems, Integrated Crop Management and Winter Oilseed Rape Production

Author(s):  
Christer Nilsson
BioControl ◽  
2009 ◽  
Vol 54 (4) ◽  
pp. 505-514 ◽  
Author(s):  
Johann G. Zaller ◽  
Dietmar Moser ◽  
Thomas Drapela ◽  
Claudia Schmöger ◽  
Thomas Frank

Agronomie ◽  
2003 ◽  
Vol 23 (8) ◽  
pp. 725-736 ◽  
Author(s):  
Jean-Fran�ois Dejoux ◽  
Jean-Marc Meynard ◽  
Raymond Reau ◽  
Romain Roche ◽  
Patrick Saulas

2016 ◽  
Vol 67 (4) ◽  
pp. 345 ◽  
Author(s):  
Ulf Böttcher ◽  
Enrico Rampin ◽  
Karla Hartmann ◽  
Federica Zanetti ◽  
Francis Flenet ◽  
...  

Implementation of the BBCH coding system for winter oilseed rape (OSR) phenology simulation can allow detailed description of crop ontogeny necessary for crop management and crop growth modelling. We developed such a BBCH model using an existing approach (Habekotté 1997). The new model describes winter OSR development by a combination of differential and conversion equations based on the structure of the BRASNAP-PH model (Habekotté 1997). Six phenological phases were reproduced daily according to the BBCH codes (00–89): emergence (00–09), leaf development (10–19), stem elongation (30–39), inflorescence emergence (50–59), flowering (60–69) and pod development-maturation period (70–89). The model takes into account temperature (including vernalisation) and photoperiod as the main environmental forces affecting crop phenology. The macro stages of leaf development and shooting were reproduced considering the rates of leaf appearance and internode extension. Model calibration and validation were performed using an extensive database of phenological observations collected from several experimental sites across France (n = 144), Germany (n = 839) and Italy (n = 577). The stability of the parameterisation was checked by a cross-calibration procedure. Applied to the independent datasets used for validation and cross-validation, the model was able to predict the whole-crop cycle with a root mean square error (RMSE) of 2.8 and 3.2 BBCH stages, respectively. Particularly accurate predictions of winter OSR development were obtained with the Italian datasets (RMSE: 2.1 and 2.3 BBCH stages for validation and cross-validation, respectively). Considering the phenological phases separately, emergence, leaf development, flowering and the pod development–maturation period were simulated with RMSE of 1.0, 2.4, 2.9 and 3.2 BBCH stages, respectively (validation datasets). Slightly higher uncertainty emerged in the prediction of stem elongation and inflorescence emergence phases (RMSE: 3.5 and 4.1 BBCH stages, validation datasets). The model reproduced winter OSR development with a sufficient degree of accuracy for a wide range of years, locations, sowing dates and genotypes, resulting in an efficient and widely applicable prediction tool with relevant practical purposes in the crop management scheduling.


Author(s):  
Paul Vollrath ◽  
Harmeet S. Chawla ◽  
Sarah V. Schiessl ◽  
Iulian Gabur ◽  
HueyTyng Lee ◽  
...  

Abstract Key message A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. Abstract Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape.


Sign in / Sign up

Export Citation Format

Share Document