winter type
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 196
Author(s):  
Yonggang Ding ◽  
Xiaoqing Tang ◽  
Xinbo Zhang ◽  
Min Zhu ◽  
Chunyan Li ◽  
...  

Global warming has changed the suitability of areas traditionally planted with crops, raising concerns about cereal security. To investigate the possibilities and constraints of increasing yields by breaking through traditional area plantings of wheat cultivars, a two-year field experiment was conducted in southern and northern locations in the Yangtze River basin (YRB), China (separated by approximately 180 km), with seven weak-winter types and six semi-winter types, respectively, bred for the two regions. The movement of weak-winter-type cultivars to the north increased or did not change grain yield and their grain yields were not significantly higher than those of local semi-winter-type cultivars. The movement of semi-winter-type cultivars to the south significantly decreased their yields. Thus, breaking through traditional area plantings did not significantly increase grain yields compared with those of local wheat cultivars. Grain yield of wheat planted in the northern YRB was higher by 5 to 20% than that in the southern YRB because of an increase in spikes that resulted from a longer spike formation phase. In addition, the post-anthesis leaf area declined more slowly in the northern YRB because of higher main stem and tiller survival. High-yielding cultivars always had more spikes and larger photosynthetic areas after anthesis than those of low-yielding cultivars regardless of the planting locations, which led to increases in post-anthesis biomass. However, the grain yield of different cultivars was highly variable under different environmental conditions. The coefficient of variation (CV) of grain yield in different cultivars was significantly positively correlated with the CV of spike number and post-anthesis biomass, implying that flexibility spike number and post-anthesis biomass in response to environmental changes can maximize release of yield potential. Therefore, improving main stem and tiller survival can increase spike number and maintain post-anthesis photosynthetic areas and help to establish a large, highly stable, and productive population with a high level of suitability and production through effectively utilizing the resources during the late growth phase. Valuable suggestions for breeding high-yield and -stability cultivars and confirming their planting range in the future are given.


2021 ◽  
Vol 19 (4) ◽  
pp. 569-581
Author(s):  
Sun-he Moon ◽  
Young-Sam Kim

Purpose: The purpose of this study was to offer useful information for improving women’s beauty self-images by analyzing personal color choices in women’s fashions and determining the correlation between color matching and personal fashion color choices in manicures and pedicures.Methods: The research subjects included 32 women aged 20–50 years who lived in capital area and whose personal color fashion choices were determined. The data were analyzed with frequency analysis, a χ2-test, and a one-way ANOVA using SPSS WIN 25.0.Results: Considering the personal color choices, they were high in “summer types” for L* values of skin, high in “winter types” for L* values of hands and feet, and high in “fall types” for values a* and b* of skin, hands, and feet. Also, with regard to matching tones for hands and feet, the personal color choices were mostly “spring types” with warm spring-type tones, summer types with cool summer-type tones, “fall types” with warm fall-type tones, and “winter types” with cool winter-type tones.Conclusion: The results of this study suggested the matched tones for hands and feet are similar to the personal color fashion choices. These findings support a theoretical basis for harmonious color matching when choosing colors in manicure and pedicure nail art. The findings of this study may assist with beauty styling and self-images of women in this fashion era.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1297
Author(s):  
Peng-Wu Yin ◽  
Xian-Guo Guo ◽  
Dao-Chao Jin ◽  
Wen-Yu Song ◽  
Lei Zhang ◽  
...  

A 12-month consecutive investigation was made at Jingha village in southern Yunnan of southwest China from April 2016 to March 2017. A total of 2053 Indochinese forest rats (Rattus andamanensis Blyth, 1860) were captured and examined, which account for 84.69% (2053/2424) of all the animal hosts (rodents and other small mammals) at the investigation site. And 39.82% (13,531/33,980) of gamasid mites were identified from the body surface of R. andamanensis and they belong to 41 species, 10 genera, 3 subfamilies and 2 families. Of the 41 species of gamasid mites identified from R. andamanensis, Laelaps nuttalli Hirst, 1915 and Laelaps echidninus Berlese, 1887 were the most dominant with 70.63% and 20.67% of constituent ratios respectively. In monthly fluctuations of all the gamasid mites on R. andamanensis, the constituent ratio (Cr) and overall infestation mean abundance (MA) of the mites in 12 months showed two obvious peaks in January (winter season) and June (summer season). However, the two dominant mite species, L. nuttalli and L. echidninus, showed different patterns of seasonal fluctuations. Laelaps nuttalli occurred throughout the year, and its Cr and MA showed two prominent peaks in winter season (December and January) and summer season (June), which belongs to the summer-winter type of seasonal fluctuation. Laelaps echidninus also occurred on R. andamanensis throughout the year, but its Cr and MA showed only one peak in winter season (December and January), which belongs to the winter type of seasonal fluctuation. A negative correlation existed between two climatic factors (temperature and rainfall) and the infestations (Cr, prevalence PM and MA) of two dominant mite species (L. nuttalli and L. echidninus) on R. andamanensis (p < 0.05). Temperature and rainfall are considered to be two key factors that influence the seasonal fluctuations of the mites on the studied rat species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Magnus Göransson ◽  
Thorbjörg Helga Sigurdardottir ◽  
Morten Lillemo ◽  
Therése Bengtsson ◽  
Jon Hallsteinn Hallsson

Icelandic barley genotypes have shown extreme earliness both in flowering and maturity compared to other north European genotypes, whereas earliness is a key trait in adapting barley to northern latitudes. Four genes were partially re-sequenced, which are Ppd-H1, HvCEN, HvELF3, and HvFT1, to better understand the mechanisms underlying this observed earliness. These genes are all known to play a part in the photoperiod response. The objective of this study is to correlate allelic diversity with flowering time and yield data from Icelandic field trials. The resequencing identified two to three alleles at each locus which resulted in 12 haplotype combinations. One haplotype combination containing the winter-type allele of Ppd-H1 correlated with extreme earliness, however, with a severe yield penalty. A winter-type allele in HvCEN in four genotypes correlated with earliness combined with high yield. Our results open the possibility of marker-assisted pyramiding as a rapid way to develop varieties with a shortened time from sowing to flowering under the extreme Icelandic growing conditions and possibly in other arctic or sub-arctic regions.


Author(s):  
Paul Vollrath ◽  
Harmeet S. Chawla ◽  
Sarah V. Schiessl ◽  
Iulian Gabur ◽  
HueyTyng Lee ◽  
...  

Abstract Key message A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. Abstract Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape.


2020 ◽  
Author(s):  
Xin He

Rapeseed (Brassica napus L.) is an important oil crop worldwide, responds to vernalization, and shows an excellent tolerance to cold stresses during vegetative stage. The winter-type and semi-winter-type rapeseed were typical winter biennial plants in Europe and China. In recent years, more and more early-maturing semi-winter rapeseed varieties were planted across China. Unfortunately, the early-maturing rapeseed varieties with low cold tolerance have higher risk of freeze injury in cold winter and spring. The molecular mechanisms for coping with different low-temperature stress conditions in rapeseed recently had gained more attention and development. The present review gives an insight into the responses of early-maturing B. napus to different low-temperature stresses (chilling, freezing, cold-acclimation, and vernalization), and the strategies to improve tolerance against low-temperature stresses are also discussed.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 16
Author(s):  
Alice Gourrion ◽  
Clara Simon ◽  
Patrick Vallée ◽  
Régine Delourme ◽  
Sébastien Chatre ◽  
...  

From 1970 to nowadays, breeders have improved oilseed rape (Brassica napus) in many ways: creation of double low varieties (free of erucic acid and with a low content in glucosinolates), increase of the seed yield and quality of seeds and improvement of resistance to diseases. All this work helped oilseed rape to become one of the most produced oilseed crop in the world. However, this intensive breeding on quality has reduced the genetic diversity of winter oilseed rape. In this study, a group of four breeding companies (RAGT, Limagrain, Syngenta, Euralis) called “GIE Colza” has been working with INRAE (National Research Institute for Agriculture, Food and Environment, France) on the FSRSO project “Printiver”. This project aimed at enlarging the genetic variability available in winter-type oilseed rape through crossing with spring-type materials to create lines with a winter-type behavior (need of vernalization) and a genetic background that has introgressed spring-type genetic diversity. Two pools have been created and selected for their need of vernalization, date of flowering, yield and other agronomic traits. The Group tested these two pools in multilocal trials. The results show interesting per se value and combining ability.


Author(s):  
M. C. Raeside ◽  
J. Byron ◽  
F. Cameron ◽  
C. MacDonald ◽  
D. L. Partington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document