Three-Dimensional Evolution of a Magnetic Flux Tube Emerging into the Solar Atmosphere

Author(s):  
Tetsuya Magara
2011 ◽  
Vol 29 (6) ◽  
pp. 1029-1035 ◽  
Author(s):  
V. Fedun ◽  
S. Shelyag ◽  
G. Verth ◽  
M. Mathioudakis ◽  
R. Erdélyi

Abstract. In this paper, we discuss simulations of MHD wave generation and propagation through a three-dimensional open magnetic flux tube in the lower solar atmosphere. By using self-similar analytical solutions for modelling the magnetic field in Cartesian coordinate system, we have constructed a 3-D magnetohydrostatic configuration which is used as the initial condition for non-linear MHD wave simulations. For a driver we have implemented a high-frequency vortex-type motion at the footpoint region of the open magnetic flux tube. It is found that the implemented swirly source is able to excite different types of wave modes, i.e. sausage, kink and torsional Alfvén modes. Analysing these waves by magneto-seismology tools could provide insight into the magnetic structure of the lower solar atmosphere.


2020 ◽  
Vol 639 ◽  
pp. A45
Author(s):  
B. Kuźma ◽  
D. Wójcik ◽  
K. Murawski ◽  
D. Yuan ◽  
S. Poedts

Context. We present new insight into the long-standing problem of plasma heating in the lower solar atmosphere in terms of collisional dissipation caused by two-fluid Alfvén waves. Aims. Using numerical simulations, we study Alfvén wave propagation and dissipation in a magnetic flux tube and their heating effect. Methods. We set up 2.5-dimensional numerical simulations with a semi-empirical model of a stratified solar atmosphere and a force-free magnetic field mimicking a magnetic flux tube. We consider a partially ionized plasma consisting of ion + electron and neutral fluids, which are coupled by ion-neutral collisions. Results. We find that Alfvén waves, which are directly generated by a monochromatic driver at the bottom of the photosphere, experience strong damping. Low-amplitude waves do not thermalize sufficient wave energy to heat the solar atmospheric plasma. However, Alfvén waves with amplitudes greater than 0.1 km s−1 drive through ponderomotive force magneto-acoustic waves in higher atmospheric layers. These waves are damped by ion-neutral collisions, and the thermal energy released in this process leads to heating of the upper photosphere and the chromosphere. Conclusions. We infer that, as a result of ion-neutral collisions, the energy carried initially by Alfvén waves is thermalized in the upper photosphere and the chromosphere, and the corresponding heating rate is large enough to compensate radiative and thermal-conduction energy losses therein.


1996 ◽  
Vol 466 (1) ◽  
pp. L39-L42 ◽  
Author(s):  
T. Amari ◽  
J. F. Luciani ◽  
J. J. Aly ◽  
M. Tagger

1990 ◽  
Vol 142 ◽  
pp. 159-174
Author(s):  
B Roberts

The basic aspects of wave propagation in a magnetic flux tube are reviewed, with particular emphasis on the types of flux tube that occur in the solar atmosphere. Two fundamental speeds arise naturally in a description of wave propagation in a flux tube: the slow magnetoacoustic (cusp) speed cT, which is both subsonic and sub-Alfvénic, and a mean Alfvén speed ck. Both surface and body modes are supported by a tube. It is stressed that a flux tube may act as a wave guide, similar to the guidance of light by a fibre optic, or sound in an ocean layer, or seismic waves in the Earth's crust.


Sign in / Sign up

Export Citation Format

Share Document