flux tube
Recently Published Documents


TOTAL DOCUMENTS

694
(FIVE YEARS 62)

H-INDEX

54
(FIVE YEARS 4)

2022 ◽  
Vol 258 ◽  
pp. 10001
Author(s):  
Pedro Bicudo ◽  
Nuno Cardoso ◽  
Alireza Sharifian

Flux tube spectra are expected to have full towers of levels due to the quantization of the string vibrations. We study a spectrum of flux tubes with static quark and antiquark sources with pure gauge SU(3) lattice QCD in 3+1 dimensions up to a significant number of excitations. To go high in the spectrum, we specialize in the most symmetric case Σg+, use a large set of operators, solve the generalized eigenvalue and compare different lattice QCD gauge actions and anisotropies.


2021 ◽  
Vol 923 (2) ◽  
pp. 248
Author(s):  
John Unverferth ◽  
Dana Longcope

Abstract In accepted models, magnetic tension drives reconnected magnetic flux away from the reconnection site at the local Alfvén speed. Numerous observational signatures of these outflows have been identified in solar flares, notable among them being supra-arcade downflows (SADs), almost none move at the Alfvén speed as predicted by models. Well-studied examples of SADs or SAD loops found in the flare of 2017 September 10 (SOL2017-09-10T15:35:00) move at a quarter or less of the expected Alfvén speed. Among those reasons posited to explain such discrepancies is the possibility that reconnected flux experiences a drag force during its outflow. Drag has not been included in previous reconnection models. Here, we develop the first such model in order to test the possibility that drag can explain sub-alfveńic reconnection outflows. Our model uses thin flux tube dynamics, previously shown to match features of flare observations other than outflow speed, including for the 2017 September 10 flare. We supplement the dynamics with a drag force representing the tube’s interaction with surrounding plasma through the formation of a wake. The wake’s width appears as a parameter in the force. We perform simulations, varying the drag parameter and synthesizing EUV observations, to test whether a drag force can produce a reasonable fit to observed features of the September 10 flare. We find that that slower retraction increases the brightness of emission and lowers the temperature of the synthetic plasma sheet. With proper choice of parameters the drag enables the simulation to agree reasonably with the observations.


2021 ◽  
Vol 923 (2) ◽  
pp. 131
Author(s):  
Naga Varun Yelagandula

Abstract Quasiperiodic pulsations (QPPs) are frequently observed in the entire range of the electromagnetic spectrum during solar flares, and there can be many possible mechanisms leading to this phenomenon. In the present work, we demonstrate the possibility of the generation of QPPs by a nonlinear fast sausage mode in a coronal loop. The coronal loop itself is represented by an infinitely long homogenous magnetic flux tube, which in many cases is a good approximation, and the nonlinearity of the fast sausage mode is modeled by the nonlinear Schrödinger equation (NSE) with a cubic nonlinearity. We have shown that the frequency-renormalized plane wave solution, which happens to be an exact solution of the NSE, transforms into a series of quasiperiodic oscillations (QPOs) due to the so-called modulational instability or the Benjamin–Feir instability. Our numerical solutions show that such QPOs evolve at almost every point above a certain height along the magnetic flux tube, which represents the coronal loop. As the fast sausage mode perturbs the plasma density strongly, the density perturbations caused by the QPOs of the nonlinear fast sausage mode correspondingly modulate the radiation throughout the electromagnetic spectrum, resulting in the emergence of the corresponding QPPs. This mechanism should therefore be able to describe some of the observed QPPs.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Joan Elias Miró ◽  
Andrea Guerrieri

Abstract We develop a bootstrap approach to Effective Field Theories (EFTs) based on the concept of duality in optimisation theory. As a first application, we consider the fascinating set of EFTs for confining flux tubes. The outcome of our analysis are optimal bounds on the scattering amplitude of Goldstone excitations of the flux tube, which in turn translate into bounds on the Wilson coefficients of the EFT action. Finally, we comment on how our approach compares to EFT positivity bounds.


Author(s):  
Hidetaka Kuniyoshi ◽  
Michael Hesse ◽  
Cecilia Norgren ◽  
Paul Tenfjord ◽  
Norah Kaggwa Kwagala

Author(s):  
Joseph E. Borovsky ◽  
Jasper S. Halekas ◽  
Phyllis L. Whittlesey

Time-series measurements of the number density ncore and temperature Tcore of the core-electron population of the solar wind are examined at 1 AU and at 0.13 AU using measurements from the WIND and Parker Solar Probe spacecraft, respectively. A statistical analysis of the ncore and Tcore measurements at 1 AU finds that the core-electron spatial structure of the solar wind is related to the magnetic-flux-tube structure of the solar wind; this electron structure is characterized by jumps in the values of ncore and Tcore when passing from one magnetic flux tube into the next. The same types of flux-tube jumps are seen for Tcore at 0.13 AU. Some models of the interplanetary electrical potential of the heliosphere predict that Tcore is a direct measure of the local electrical potential in the heliosphere. If so, then jumps seen in Tcore represent jumps in the electrical potential from flux tube to flux tube. This may imply that the interplanetary electrical potential (and its effect on the radial evolution away from the Sun of solar-wind ions and electrons) independently operates in each flux tube of the heliosphere.


Author(s):  
Bastian B. Brandt

AbstractWe perform a high-precision measurement of the spectrum of the flux tube in three-dimensional $${\text {SU}}(2)$$ SU ( 2 ) gauge theory at multiple lattice spacings. We compare the results at large $$q\bar{q}$$ q q ¯ separations R to the spectrum predicted by the effective string theory, including the leading-order boundary term with a nonuniversal coefficient. We find qualitative agreement with the predictions from the leading-order Nambu–Goto string theory down to small values of R, while, at the same time, observing the predicted splitting of the second excited state due to the boundary term. On fine lattices and at large R, we observe slight deviations from the EST predictions for the first excited state.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 170
Author(s):  
Michele Caselle

In this review, after a general introduction to the effective string theory (EST) description of confinement in pure gauge theories, we discuss the behaviour of EST as the temperature is increased. We show that, as the deconfinement point is approached from below, several universal features of confining gauge theories, like the ratio Tc/σ0, the linear increase of the squared width of the flux tube with the interquark distance, or the temperature dependence of the interquark potential, can be accurately predicted by the effective string. Moreover, in the vicinity of the deconfinement point the EST behaviour turns out to be in good agreement with what was predicted by conformal invariance or by dimensional reduction, thus further supporting the validity of an EST approach to confinement.


Author(s):  
Aly A. Abdel‐Aziz ◽  
Khaled H. Ahmed ◽  
Ahmed M. Massoud ◽  
Barry W. Williams
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document