magnetic flux tubes
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 29)

H-INDEX

42
(FIVE YEARS 2)

2022 ◽  
Vol 258 ◽  
pp. 05002
Author(s):  
Andreas Ipp ◽  
David I. Müller ◽  
Daniel Schuh

In these proceedings, we report on our numerical lattice simulations of partons traversing the boost-invariant, non-perturbative glasma as created at the early stages of collisions at RHIC and LHC. Since these highly energetic partons are produced from hard scatterings during heavy-ion collisions, they are already affected by the first stage of the medium's time evolution, the glasma, which is the pre-equilibrium precursor state of the quark-gluon plasma. We find that partons quickly accumulate transverse momentum up to the saturation momentum during the glasma stage. Moreover, we observe an interesting anisotropy in transverse momentum broadening of partons with larger broadening in the rapidity than in the azimuthal direction. Its origin can be related to correlations among the longitudinal color-electric and color-magnetic flux tubes in the initial state of the glasma. We compare these observations to the semi-analytic results obtained by a weak-field approximation, where we also find such an anisotropy in a parton's transverse momentum broadening.


2021 ◽  
Vol 923 (1) ◽  
pp. 13
Author(s):  
Sergey A. Cherkis ◽  
Maxim Lyutikov

Abstract We consider topological configurations of the magnetically coupled spinning stellar binaries (e.g., merging neutron stars or interacting star–planet systems). We discuss conditions when the stellar spins and the orbital motion nearly “compensate” each other, leading to very slow overall winding of the coupled magnetic fields; slowly winding configurations allow gradual accumulation of magnetic energy, which is eventually released in a flare when the instability threshold is reached. We find that this slow winding can be global and/or local. We describe the topology of the relevant space F = T 1 S 2 as the unit tangent bundle of the two-sphere and find conditions for slowly winding configurations in terms of magnetic moments, spins, and orbital momentum. These conditions become ambiguous near the topological bifurcation points; in certain cases, they also depend on the relative phases of the spin and orbital motions. In the case of merging magnetized neutron stars, if one of the stars is a millisecond pulsar, spinning at ∼10 ms, the global resonance ω 1 + ω 2 = 2Ω (spin-plus beat is two times the orbital period) occurs approximately one second before the merger; the total energy of the flare can be as large as 10% of the total magnetic energy, producing bursts of luminosity ∼1044 erg s−1. Higher order local resonances may have similar powers, since the amount of involved magnetic flux tubes may be comparable to the total connected flux.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. MacTaggart ◽  
C. Prior ◽  
B. Raphaldini ◽  
P. Romano ◽  
S. L. Guglielmino

AbstractThe magnetic nature of the formation of solar active regions lies at the heart of understanding solar activity and, in particular, solar eruptions. A widespread model, used in many theoretical studies, simulations and the interpretation of observations, is that the basic structure of an active region is created by the emergence of a large tube of pre-twisted magnetic field. Despite plausible reasons and the availability of various proxies suggesting the accuracy of this model, there has not yet been a methodology that can clearly and directly identify the emergence of large pre-twisted magnetic flux tubes. Here, we present a clear signature of the emergence of pre-twisted magnetic flux tubes by investigating a robust topological quantity, called magnetic winding, in solar observations. This quantity detects the emerging magnetic topology despite the significant deformation experienced by the emerging magnetic field. Magnetic winding complements existing measures, such as magnetic helicity, by providing distinct information about field line topology, thus allowing for the direct identification of emerging twisted magnetic flux tubes.


Solar Physics ◽  
2021 ◽  
Vol 296 (6) ◽  
Author(s):  
Michael S. Ruderman ◽  
Nikolai S. Petrukhin

AbstractWe study kink oscillations of a straight magnetic tube in the presence of siphon flows. The tube consists of a core and a transitional or boundary layer. The flow velocity is parallel to the tube axis, has constant magnitude, and confined in the tube core. The plasma density is constant in the tube core and it monotonically decreases in the transitional layer to its value in the surrounding plasma. We use the expression for the decrement/increment previously obtained by Ruderman and Petrukhin (Astron. Astrophys.631, A31, 2019) to study the damping and resonant instability of kink oscillations. We show that, depending on the magnitude of siphon-velocity, resonant absorption can cause either the damping of kink oscillations or their enhancement. There are two threshold velocities: When the flow velocity is below the first threshold velocity, kink oscillations damp. When the flow velocity is above the second threshold velocity, the kink oscillation amplitudes grow. Finally, when the flow velocity is between the two threshold velocities, the oscillation amplitudes do not change. We apply the theoretical result to kink oscillations of prominence threads. We show that, for particular values of thread parameters, resonant instability can excite these kink oscillations.


2021 ◽  
Vol 914 (1) ◽  
pp. 26
Author(s):  
K.-J. Hwang ◽  
J. L. Burch ◽  
C. T. Russell ◽  
E. Choi ◽  
K. Dokgo ◽  
...  

2021 ◽  
Vol 912 (1) ◽  
pp. 50
Author(s):  
Anwar A. Aldhafeeri ◽  
Gary Verth ◽  
Wernher Brevis ◽  
David B. Jess ◽  
Max McMurdo ◽  
...  

2021 ◽  
Vol 909 (2) ◽  
pp. 201
Author(s):  
Mohammad Sadeghi ◽  
Karam Bahari ◽  
Kayoomars Karami

Sign in / Sign up

Export Citation Format

Share Document