flux tubes
Recently Published Documents


TOTAL DOCUMENTS

1033
(FIVE YEARS 99)

H-INDEX

64
(FIVE YEARS 5)

2022 ◽  
Vol 258 ◽  
pp. 05002
Author(s):  
Andreas Ipp ◽  
David I. Müller ◽  
Daniel Schuh

In these proceedings, we report on our numerical lattice simulations of partons traversing the boost-invariant, non-perturbative glasma as created at the early stages of collisions at RHIC and LHC. Since these highly energetic partons are produced from hard scatterings during heavy-ion collisions, they are already affected by the first stage of the medium's time evolution, the glasma, which is the pre-equilibrium precursor state of the quark-gluon plasma. We find that partons quickly accumulate transverse momentum up to the saturation momentum during the glasma stage. Moreover, we observe an interesting anisotropy in transverse momentum broadening of partons with larger broadening in the rapidity than in the azimuthal direction. Its origin can be related to correlations among the longitudinal color-electric and color-magnetic flux tubes in the initial state of the glasma. We compare these observations to the semi-analytic results obtained by a weak-field approximation, where we also find such an anisotropy in a parton's transverse momentum broadening.


2022 ◽  
Vol 258 ◽  
pp. 10001
Author(s):  
Pedro Bicudo ◽  
Nuno Cardoso ◽  
Alireza Sharifian

Flux tube spectra are expected to have full towers of levels due to the quantization of the string vibrations. We study a spectrum of flux tubes with static quark and antiquark sources with pure gauge SU(3) lattice QCD in 3+1 dimensions up to a significant number of excitations. To go high in the spectrum, we specialize in the most symmetric case Σg+, use a large set of operators, solve the generalized eigenvalue and compare different lattice QCD gauge actions and anisotropies.


2022 ◽  
Vol 924 (2) ◽  
pp. L27
Author(s):  
George Younes ◽  
Samuel K Lander ◽  
Matthew G. Baring ◽  
Teruaki Enoto ◽  
Chryssa Kouveliotou ◽  
...  

Abstract Magnetars, isolated neutron stars with magnetic-field strengths typically ≳1014 G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape, yet the inferred surface hot spots shrink during peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is ≲100 m day−1, constraining the density of the driving region to ρ ∼ 1010 g cm−3, at a depth of ∼200 m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, that untwist and dissipate on the 30–40 day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. This novel data set paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem.


2021 ◽  
Vol 923 (1) ◽  
pp. 13
Author(s):  
Sergey A. Cherkis ◽  
Maxim Lyutikov

Abstract We consider topological configurations of the magnetically coupled spinning stellar binaries (e.g., merging neutron stars or interacting star–planet systems). We discuss conditions when the stellar spins and the orbital motion nearly “compensate” each other, leading to very slow overall winding of the coupled magnetic fields; slowly winding configurations allow gradual accumulation of magnetic energy, which is eventually released in a flare when the instability threshold is reached. We find that this slow winding can be global and/or local. We describe the topology of the relevant space F = T 1 S 2 as the unit tangent bundle of the two-sphere and find conditions for slowly winding configurations in terms of magnetic moments, spins, and orbital momentum. These conditions become ambiguous near the topological bifurcation points; in certain cases, they also depend on the relative phases of the spin and orbital motions. In the case of merging magnetized neutron stars, if one of the stars is a millisecond pulsar, spinning at ∼10 ms, the global resonance ω 1 + ω 2 = 2Ω (spin-plus beat is two times the orbital period) occurs approximately one second before the merger; the total energy of the flare can be as large as 10% of the total magnetic energy, producing bursts of luminosity ∼1044 erg s−1. Higher order local resonances may have similar powers, since the amount of involved magnetic flux tubes may be comparable to the total connected flux.


2021 ◽  
Vol 922 (2) ◽  
pp. 118
Author(s):  
Joseph Scalisi ◽  
Michael S. Ruderman ◽  
Robertus Erdélyi

Abstract We model the behavior of a torsional Alfvén pulse, assumed to propagate through the chromosphere. Building on our existing model, we utilize the zero-beta approximation appropriate for plasma in an intense magnetic flux tube, e.g., a magnetic bright point. The model is adapted to investigate the connection between these features and chromospheric spicules. A pulse is introduced at the lower, photospheric boundary of the tube as a magnetic shear perturbation, and the resulting propagating Alfvén waves are reflected from an upper boundary, representing the change in density found at the transition region. The induced upward mass flux is followed by the reversal of the flux that may be identified with the rising and falling behavior of certain lower solar atmospheric jets. The ratio of the transmitted and reflected mass flux is estimated and compared with the relative total mass of spicules and the solar wind. An example is used to study the properties of the pulse. We also find that the interaction between the initial and reflected waves may create a localized flow that persists independently from the pulse itself.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. MacTaggart ◽  
C. Prior ◽  
B. Raphaldini ◽  
P. Romano ◽  
S. L. Guglielmino

AbstractThe magnetic nature of the formation of solar active regions lies at the heart of understanding solar activity and, in particular, solar eruptions. A widespread model, used in many theoretical studies, simulations and the interpretation of observations, is that the basic structure of an active region is created by the emergence of a large tube of pre-twisted magnetic field. Despite plausible reasons and the availability of various proxies suggesting the accuracy of this model, there has not yet been a methodology that can clearly and directly identify the emergence of large pre-twisted magnetic flux tubes. Here, we present a clear signature of the emergence of pre-twisted magnetic flux tubes by investigating a robust topological quantity, called magnetic winding, in solar observations. This quantity detects the emerging magnetic topology despite the significant deformation experienced by the emerging magnetic field. Magnetic winding complements existing measures, such as magnetic helicity, by providing distinct information about field line topology, thus allowing for the direct identification of emerging twisted magnetic flux tubes.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuhong Fan

AbstractIt has been a prevailing picture that active regions on the solar surface originate from a strong toroidal magnetic field stored in the overshoot region at the base of the solar convection zone, generated by a deep seated solar dynamo mechanism. This article reviews the studies in regard to how the toroidal magnetic field can destabilize and rise through the convection zone to form the observed solar active regions at the surface. Furthermore, new results from the global simulations of the convective dynamos, and from the near-surface layer simulations of active region formation, together with helioseismic investigations of the pre-emergence active regions, are calling into question the picture of active regions as buoyantly rising flux tubes originating from the bottom of the convection zone. This article also gives a review on these new developments.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Joan Elias Miró ◽  
Andrea Guerrieri

Abstract We develop a bootstrap approach to Effective Field Theories (EFTs) based on the concept of duality in optimisation theory. As a first application, we consider the fascinating set of EFTs for confining flux tubes. The outcome of our analysis are optimal bounds on the scattering amplitude of Goldstone excitations of the flux tube, which in turn translate into bounds on the Wilson coefficients of the EFT action. Finally, we comment on how our approach compares to EFT positivity bounds.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
P. Bicudo ◽  
N. Cardoso ◽  
A. Sharifian
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document