A Learning Rule in the Chebyshev Norm for Multilayer Perceptrons

Author(s):  
P. Burrascano ◽  
P. Lucci
2012 ◽  
Author(s):  
Jeri L. Little ◽  
Mark A. McDaniel ◽  
Michael J. Cahill

2020 ◽  
Vol 16 (2) ◽  
pp. 280-289
Author(s):  
Ghalib H. Alshammri ◽  
Walid K. M. Ahmed ◽  
Victor B. Lawrence

Background: The architecture and sequential learning rule-based underlying ARFIS (adaptive-receiver-based fuzzy inference system) are proposed to estimate and predict the adaptive threshold-based detection scheme for diffusion-based molecular communication (DMC). Method: The proposed system forwards an estimate of the received bits based on the current molecular cumulative concentration, which is derived using sequential training-based principle with weight and bias and an input-output mapping based on both human knowledge in the form of fuzzy IFTHEN rules. The ARFIS architecture is employed to model nonlinear molecular communication to predict the received bits over time series. Result: This procedure is suitable for binary On-OFF-Keying (Book signaling), where the receiver bio-nanomachine (Rx Bio-NM) adapts the 1/0-bit detection threshold based on all previous received molecular cumulative concentrations to alleviate the inter-symbol interference (ISI) problem and reception noise. Conclusion: Theoretical and simulation results show the improvement in diffusion-based molecular throughput and the optimal number of molecules in transmission. Furthermore, the performance evaluation in various noisy channel sources shows promising improvement in the un-coded bit error rate (BER) compared with other threshold-based detection schemes in the literature.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 721
Author(s):  
Krzysztof Adamczyk ◽  
Wilhelm Grzesiak ◽  
Daniel Zaborski

The aim of the present study was to verify whether artificial neural networks (ANN) may be an effective tool for predicting the culling reasons in cows based on routinely collected first-lactation records. Data on Holstein-Friesian cows culled in Poland between 2017 and 2018 were used in the present study. A general discriminant analysis (GDA) was applied as a reference method for ANN. Considering all predictive performance measures, ANN were the most effective in predicting the culling of cows due to old age (99.76–99.88% of correctly classified cases). In addition, a very high correct classification rate (99.24–99.98%) was obtained for culling the animals due to reproductive problems. It is significant because infertility is one of the conditions that are the most difficult to eliminate in dairy herds. The correct classification rate for individual culling reasons obtained with GDA (0.00–97.63%) was, in general, lower than that for multilayer perceptrons (MLP). The obtained results indicated that, in order to effectively predict the previously mentioned culling reasons, the following first-lactation parameters should be used: calving age, calving difficulty, and the characteristics of the lactation curve based on Wood’s model parameters.


2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Fernando Leonel Aguirre ◽  
Nicolás M. Gomez ◽  
Sebastián Matías Pazos ◽  
Félix Palumbo ◽  
Jordi Suñé ◽  
...  

In this paper, we extend the application of the Quasi-Static Memdiode model to the realistic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.


2021 ◽  
Author(s):  
Jakub Ważny ◽  
Michał Stefaniuk ◽  
Adam Cygal

AbstractArtificial neural networks method (ANNs) is a common estimation tool used for geophysical applications. Considering borehole data, when the need arises to supplement a missing well log interval or whole logging—ANNs provide a reliable solution. Supervised training of the network on a reliable set of borehole data values with further application of this network on unknown wells allows creation of synthetic values of missing geophysical parameters, e.g., resistivity. The main assumptions for boreholes are: representation of similar geological conditions and the use of similar techniques of well data collection. In the analyzed case, a set of Multilayer Perceptrons were trained on five separate chronostratigraphic intervals of borehole, considered as training data. The task was to predict missing deep laterolog (LLD) logging in a borehole representing the same sequence of layers within the Lublin Basin area. Correlation between well logs data exceeded 0.8. Subsequently, magnetotelluric parametric soundings were modeled and inverted on both boreholes. Analysis showed that congenial Occam 1D models had better fitting of TM mode of MT data in each case. Ipso facto, synthetic LLD log could be considered as a basis for geophysical and geological interpretation. ANNs provided solution for supplementing datasets based on this analytical approach.


Sign in / Sign up

Export Citation Format

Share Document