category learning
Recently Published Documents


TOTAL DOCUMENTS

973
(FIVE YEARS 180)

H-INDEX

62
(FIVE YEARS 4)

Cognition ◽  
2022 ◽  
Vol 221 ◽  
pp. 104984
Author(s):  
Franziska Bröker ◽  
Bradley C. Love ◽  
Peter Dayan

2022 ◽  
Author(s):  
Jelena Sucevic ◽  
Anna C. Schapiro

In addition to its critical role in encoding individual episodes, the hippocampus is capable of extracting regularities across experiences. This ability is central to category learning, and a growing literature indicates that the hippocampus indeed makes important contributions to this kind of learning. Using a neural network model that mirrors the anatomy of the hippocampus, we investigated the mechanisms by which the hippocampus may support novel category learning. We simulated three category learning paradigms and evaluated the network's ability to categorize and to recognize specific exemplars in each. We found that the trisynaptic pathway within the hippocampus-connecting entorhinal cortex to dentate gyrus, CA3, and CA1-was critical for remembering individual exemplars, reflecting the rapid binding and pattern separation functions of this circuit. The monosynaptic pathway from entorhinal cortex to CA1, in contrast, was responsible for detecting the regularities that define category structure, made possible by the use of distributed representations and a slower learning rate. Together, the simulations provide an account of how the hippocampus and its constituent pathways support novel category learning.


2022 ◽  
Author(s):  
Katie Hoemann ◽  
Maria Gendron ◽  
Lisa Feldman Barrett

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259517
Author(s):  
Katerina Dolguikh ◽  
Tyrus Tracey ◽  
Mark R. Blair

Feedback is essential for many kinds of learning, but the cognitive processes involved in learning from feedback are unclear. Models of category learning incorporate selective attention to stimulus features while generating a response, but during the feedback phase of an experiment, it is assumed that participants receive complete information about stimulus features as well as the correct category. The present work looks at eye tracking data from six category learning datasets covering a variety of category complexities and types. We find that selective attention to task-relevant information is pervasive throughout feedback processing, suggesting a role for selective attention in memory encoding of category exemplars. We also find that error trials elicit additional stimulus processing during the feedback phase. Finally, our data reveal that participants increasingly skip the processing of feedback altogether. At the broadest level, these three findings reveal that selective attention is ubiquitous throughout the entire category learning task, functioning to emphasize the importance of certain stimulus features, the helpfulness of extra stimulus encoding during times of uncertainty, and the superfluousness of feedback once one has learned the task. We discuss the implications of our findings for modelling efforts in category learning from the perspective of researchers trying to capture the full dynamic interaction of selective attention and learning, as well as for researchers focused on other issues, such as category representation, whose work only requires simplifications that do a reasonable job of capturing learning.


Author(s):  
Peter S. Whitehead ◽  
Amanda Zamary ◽  
Elizabeth J. Marsh
Keyword(s):  

2021 ◽  
Author(s):  
Emily Weichart ◽  
Daniel Evans ◽  
Matthew Galdo ◽  
Giwon Bahg ◽  
Brandon Turner

In order to accurately categorize novel items, humans learn to selectively attend to stimulus dimensions that are most relevant to the task. Models of category learning describe the interconnected cognitive processes that contribute to selective attention as observations of stimuli and category feedback are progressively acquired. The Adaptive Attention Representation Model (AARM), for example, provides an account whereby categorization decisions are based on the perceptual similarity of a new stimulus to stored exemplars, and dimension-wise attention is updated on every trial in the direction of a feedback-based error gradient. As such, attention modulation as described by AARM requires interactions among orienting, visual perception, memory retrieval, error monitoring, and goal maintenance in order to facilitate learning across trials. The current study explored the neural bases of attention mechanisms using quantitative predictions from AARM to analyze behavioral and fMRI data collected while participants learned novel categories. GLM analyses revealed patterns of BOLD activation in the parietal cortex (orienting), visual cortex (perception), medial temporal lobe (memory retrieval), basal ganglia (error monitoring), and prefrontal cortex (goal maintenance) that covaried with the magnitude of model-predicted attentional tuning. Results are consistent with AARM’s specification of attention modulation as a dynamic property of distributed cognitive systems.


2021 ◽  
Vol 1 (4) ◽  
pp. 100048
Author(s):  
Aaron P. Jones ◽  
Monica Goncalves-Garcia ◽  
Benjamin Gibson ◽  
Michael C.S. Trumbo ◽  
Brian A. Coffman ◽  
...  

2021 ◽  
Author(s):  
Micah B. Goldwater ◽  
Courtney Hilton ◽  
Tyler H. Davis

Sign in / Sign up

Export Citation Format

Share Document