Short Range Flood Forecasting on the River Rhine

Author(s):  
J. R. Moll
Author(s):  
M Mueller ◽  
M Tinz ◽  
A Assmann ◽  
P Krahe ◽  
C Rachimow ◽  
...  

2019 ◽  
Vol 20 (7) ◽  
pp. 1379-1398 ◽  
Author(s):  
Shasha Han ◽  
Paulin Coulibaly

Recent advances in the field of flood forecasting have shown increased interests in probabilistic forecasting as it provides not only the point forecast but also the assessment of associated uncertainty. Here, an investigation of a hydrologic uncertainty processor (HUP) as a postprocessor of ensemble forecasts to generate probabilistic flood forecasts is presented. The main purpose is to quantify dominant uncertainties and enhance flood forecast reliability. HUP is based on Bayes’s theorem and designed to capture hydrologic uncertainty. Ensemble forecasts are forced by ensemble weather forecasts from the Global Ensemble Prediction System (GEPS) that are inherently uncertain, and the input uncertainty propagates through the model chain and integrates with hydrologic uncertainty in HUP. The bias of GEPS was removed using multivariate bias correction, and several scenarios were developed by different combinations of GEPS with HUP. The performance of different forecast horizons for these scenarios was compared using multifaceted evaluation metrics. Results show that HUP is able to improve the performance for both short- and medium-range forecasts; the improvement is significant for short lead times and becomes less obvious with increasing lead time. Overall, the performances for short-range forecasts when using HUP are promising, and the most satisfactory result for the short range is obtained by applying bias correction to each ensemble member plus applying the HUP postprocessor.


Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Author(s):  
E.A. Kenik ◽  
T.A. Zagula ◽  
M.K. Miller ◽  
J. Bentley

The state of long-range order (LRO) and short-range order (SRO) in Ni4Mo has been a topic of interest for a considerable time (see Brooks et al.). The SRO is often referred to as 1½0 order from the apparent position of the diffuse maxima in diffraction patterns, which differs from the positions of the LRO (D1a) structure. Various studies have shown that a fully disordered state cannot be retained by quenching, as the atomic arrangements responsible for the 1½0 maxima are present at temperatures above the critical ordering temperature for LRO. Over 20 studies have attempted to identify the atomic arrangements associated with this state of order. A variety of models have been proposed, but no consensus has been reached. It has also been shown that 1 MeV electron irradiation at low temperatures (∼100 K) can produce the disordered phase in Ni4Mo. Transmission electron microscopy (TEM), atom probe field ion microscopy (APFIM), and electron irradiation disordering have been applied in the current study to further the understanding of the ordering processes in Ni4Mo.


1969 ◽  
Vol 14 (8) ◽  
pp. 437-438
Author(s):  
CELIA STENDLER LAVATELLI

1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-175-Pr2-178 ◽  
Author(s):  
G. T. Pérez ◽  
F. H. Salas ◽  
R. Morales ◽  
L. M. Álvarez-Prado ◽  
J. M. Alameda

Sign in / Sign up

Export Citation Format

Share Document