Feedback Linearization Techniques in Robotics and Power Systems

Author(s):  
Riccardo Marino
2013 ◽  
Vol 2 (3) ◽  
pp. 216
Author(s):  
Rekha Chaudhary ◽  
Arun Kumar Singh

The objective of this paper is to design controller for non-linear power system using Direct Feedback Linearization technique to improve the transient stability and to achieve better voltage regulation. In case of fault in the power system, power angle and the terminal voltage are the parameters which are to be monitored. The simulation has been carried out taking different values of initial power angles and results were obtained for power angle and terminal voltage. To overcome the demerits of DFL-LQ optimal controller and DFL voltage regulator, co-ordinated controller is proposed. Simulation results show that transient stability of a power system under a large sudden fault has been improved by using co-ordinated controller.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Hai-Yan Li ◽  
Yun-An Hu ◽  
Jian-Cun Ren ◽  
Min Zhu

For a class of MIMO nonaffine block nonlinear systems, a neural network- (NN-) based dynamic feedback backstepping control design method is proposed to solve the tracking problem. This problem is difficult to be dealt with in the control literature, mainly because the inverse controls of block nonaffine systems are not easy to resolve. To overcome this difficulty, dynamic feedback, backstepping design, sliding mode-like technique, NN, and feedback linearization techniques are incorporated to deal with this problem, in which the NNs are used to approximate and adaptively cancel the uncertainties. It is proved that the whole closed-loop system is stable in the sense of Lyapunov. Finally, simulations verify the effectiveness of the proposed scheme.


2010 ◽  
Vol 57 (2) ◽  
pp. 345-354 ◽  
Author(s):  
Jangheon Kim ◽  
Changjoon Park ◽  
Junghwan Moon ◽  
Bumman Kim

Sign in / Sign up

Export Citation Format

Share Document