The Effect of Contact Stress Intensity Factors on Fatigue Crack Propagation

Author(s):  
Y. C. Lam ◽  
J. F. Williams
2012 ◽  
Vol 165 ◽  
pp. 16-20
Author(s):  
N.A. Akeel ◽  
Z. Sajuri ◽  
Ahmad Kamal Ariffin

Fatigue crack propagation in two-dimensional rail track model under constant amplitude loading was analyzed using finite element method. The stress intensity factor was predicted using the displacement correlation method that was written in FORTRAN code and exported to Post2D to run the program and utilizing the singular elements around the crack tip area with automatic remeshing model. The fatigue crack propagation is modeled through the successive linear extensions under the linear elastic assumption. To simulate the propagation a single edge angled-crack was introduced to calculate the accurate values of stress intensity factors. The fatigue crack propagation for rail track under four point bend loading model was successfully simulated. The crack was initially propagated in direction inclined to the rail head surface but changed its direction 90° to rail head surface after certain crack length. The mix mode stress intensity factors were also successfully determined through the proposed model.


2015 ◽  
Vol 6 (4) ◽  
pp. 510-521
Author(s):  
Jirí Behal ◽  
Petr Homola ◽  
Roman Ružek

Purpose – The prediction of fatigue crack growth behaviour is an important part of damage tolerance analyses. Recently, the author’s work has focused on evaluating the FASTRAN retardation model. This model is implemented in the AFGROW code, which allows different retardation models to be compared. The primary advantage of the model is that all input parameters, including those for an initial plane-strain state and its transition to a plane-stress-state, are objectively measured using standard middle-crack-tension M(T) specimens. The purpose of this paper is to evaluate the ability of the FASTRAN model to predict correct retardation effects due to high loading peaks that occur during variable amplitude loading in sequences representative of an aircraft service. Design/methodology/approach – This paper addresses pre-setting of the fracture toughness K R (based on J-integral J Q according to ASTM1820) in the FASTRAN retardation model. A set of experiments were performed using specimens made from a 7475-T7351 aluminium alloy plate. Loading sequences with peaks ordered in ascending-descending blocks were used. The effect of truncating and clipping selected load levels on crack propagation behaviour was evaluated using both experimental data and numerical analyses. The findings were supported by the results of a fractographic analysis. Findings – Fatigue crack propagation data defined using M(T) specimens made from Al 7475-T7351 alloy indicate the difficulty of evaluating the following two events simultaneously: fatigue crack increments after application of loads with maximum amplitudes that exceeded J Q and subcritical crack increments caused by loads at high stress intensity factors. An effect of overloading peaks with a maximum that exceeds J Q should be assessed using a special analysis beyond the scope of the FASTRAN retardation model. Originality/value – Measurements of fatigue crack growth on specimens made from 7475 T7351 aluminium alloy were carried out. The results indicated that simultaneously evaluating fatigue crack increments after application of the load amplitude above J Q and subcritical increments caused by the loads at high stress intensity factors is difficult. Experiments demonstrated that if the fatigue crack reaches a specific length, the maximal amplitude load induces considerable crack growth retardation.


2016 ◽  
Vol 823 ◽  
pp. 23-29
Author(s):  
Claudiu Ovidiu Popa ◽  
Simion Haragâş

The values of the stress intensity factor (SIF) KI are almost always negative in the substrate of the gear teeth, due to the compressive stresses field. The more negative values are higher, respectively, the positive values are lower, the crack faces are more compressed, so the probability of crack propagation after the mode I is lower. Thus, the analysis of the factors leading to the minimum KI values may reveal the conditions that favor the fatigue crack propagation by opening mode. Instead, SIF KII is determinant in the growth rate of the fatigue crack by mode II, in terms of compressive stresses field. Thus, the more KII is higher, the propagation speed is higher, so an analysis of the factors that lead to its maximum value is very useful. The equivalent stress intensity factor Keq corresponds to a mixed-mode of loading and take into account the simultaneous influence of both stress intensity factors KI and KII. The variation of this factor can be used as a parameter of the modified Paris law, in order to study the propagation of the fatigue cracks in the case of mixed-mode loading of contact area between teeth flanks. SIFs variations were analyzed according to the state of stresses, position on the pitch line between the gear teeth flanks, position and angle of an initial crack in the gear tooth substrate, residual tensions etc.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
J. Efrain Rodriguez-Sanchez ◽  
Alejandro Rodriguez-Castellanos ◽  
Faustino Perez-Guerrero

Fracture mechanics calculations are required to validate the safety level defined in design codes to prevent a fatigue failure. The periodic inspection-assessment cycle can lead to the implementation of a fatigue crack repair by crack removal. To improve the fatigue performance of the crack repair, residual compressive stresses induced by peening can be considered. This paper is in relation to the peening effect estimation on stress intensity factors in fatigue crack repaired weldments, since the stress intensity factor is a key parameter in fracture mechanics calculations. A set of T-butt specimens were experimentally fatigue tested and crack propagation data was gathered for the calculation of stress intensity factors. The experiments were designed to estimate the residual compressive stress depth layer and its effect on crack propagation inhibition. Experimental estimation of the peening effect on stress intensity factors in fatigue crack repaired weldments was validated by comparison against an analytical weight function solution. Experimental stress intensity factors determined from a set of fatigue tested T-butt specimens allowed estimating preliminarily that peening has a limited effect on fatigue crack propagation inhibition for edge repaired T-butt weldments subjected to bending loading.


Sign in / Sign up

Export Citation Format

Share Document