Prediction of Fatigue Crack Propagation of Rail Material Using 2D Finite Element Modeling

2012 ◽  
Vol 165 ◽  
pp. 16-20
Author(s):  
N.A. Akeel ◽  
Z. Sajuri ◽  
Ahmad Kamal Ariffin

Fatigue crack propagation in two-dimensional rail track model under constant amplitude loading was analyzed using finite element method. The stress intensity factor was predicted using the displacement correlation method that was written in FORTRAN code and exported to Post2D to run the program and utilizing the singular elements around the crack tip area with automatic remeshing model. The fatigue crack propagation is modeled through the successive linear extensions under the linear elastic assumption. To simulate the propagation a single edge angled-crack was introduced to calculate the accurate values of stress intensity factors. The fatigue crack propagation for rail track under four point bend loading model was successfully simulated. The crack was initially propagated in direction inclined to the rail head surface but changed its direction 90° to rail head surface after certain crack length. The mix mode stress intensity factors were also successfully determined through the proposed model.

2015 ◽  
Vol 6 (4) ◽  
pp. 510-521
Author(s):  
Jirí Behal ◽  
Petr Homola ◽  
Roman Ružek

Purpose – The prediction of fatigue crack growth behaviour is an important part of damage tolerance analyses. Recently, the author’s work has focused on evaluating the FASTRAN retardation model. This model is implemented in the AFGROW code, which allows different retardation models to be compared. The primary advantage of the model is that all input parameters, including those for an initial plane-strain state and its transition to a plane-stress-state, are objectively measured using standard middle-crack-tension M(T) specimens. The purpose of this paper is to evaluate the ability of the FASTRAN model to predict correct retardation effects due to high loading peaks that occur during variable amplitude loading in sequences representative of an aircraft service. Design/methodology/approach – This paper addresses pre-setting of the fracture toughness K R (based on J-integral J Q according to ASTM1820) in the FASTRAN retardation model. A set of experiments were performed using specimens made from a 7475-T7351 aluminium alloy plate. Loading sequences with peaks ordered in ascending-descending blocks were used. The effect of truncating and clipping selected load levels on crack propagation behaviour was evaluated using both experimental data and numerical analyses. The findings were supported by the results of a fractographic analysis. Findings – Fatigue crack propagation data defined using M(T) specimens made from Al 7475-T7351 alloy indicate the difficulty of evaluating the following two events simultaneously: fatigue crack increments after application of loads with maximum amplitudes that exceeded J Q and subcritical crack increments caused by loads at high stress intensity factors. An effect of overloading peaks with a maximum that exceeds J Q should be assessed using a special analysis beyond the scope of the FASTRAN retardation model. Originality/value – Measurements of fatigue crack growth on specimens made from 7475 T7351 aluminium alloy were carried out. The results indicated that simultaneously evaluating fatigue crack increments after application of the load amplitude above J Q and subcritical increments caused by the loads at high stress intensity factors is difficult. Experiments demonstrated that if the fatigue crack reaches a specific length, the maximal amplitude load induces considerable crack growth retardation.


Author(s):  
Kota Sugawara ◽  
Hirohito Koya ◽  
Hiroshi Okada ◽  
Yinsheng Li ◽  
Kazuya Osakabe ◽  
...  

In this paper, some results of crack propagation analyses of deep initially semi-elliptical flaws under assumed residual stress fields are presented. The crack propagation analyses were performed by using a software system that has been developed by Okada and his colleagues. It is based on a conventional finite element program but uses the quadratic tetrahedral finite elements to model the structure with the crack. The finite element model with the crack can be generated in an automated manner. The stress-intensity factor computations are performed by using the virtual crack closure-integral method (VCCM) for the quadratic tetrahedral finite element which was also proposed by Okada and his colleagues. The automatic meshing scheme for the crack propagation analyses has also been developed by the authors. By the authors’ previous publication, it was shown that the stress intensity factor of deep semi-elliptical surface flaw under assumed residual stress field reached its maximum value at the mid-depth of the crack. Hence, in present study, in order to investigate the feature of the crack propagation of deep surface cracks, we are conducting crack propagation analyses that can predict the crack extension from each point along the crack front for an arbitrary shaped surface flaw. It can also account for material anisotropy in the crack propagation behavior. Then, the SCC crack propagation analyses for a deep semi-elliptical surface flaw in a plate under assumed residual stress fields are being conducted. The results of the crack propagation analyses suggest that the shapes of the crack after the SCC crack propagation may not be exact semi-elliptic in its shape. In this paper, the analytical procedures and some results are presented. The same analytical procedures can be adopted to perform fatigue crack propagation analyses.


Author(s):  
Rémi Lacroix ◽  
Axelle Caron ◽  
Sandrine Dischert ◽  
Hubert Deschanels ◽  
Moïse Pignol

Stress intensity factors (SIFs) are a major feature in regulatory analyses of Nuclear Power Plants (NPP) components, as they allow to rule on the acceptability of defects when compared to a critical experimental value (K1c). Simplified and robust evaluations of SIFs have been provided in major regulations standards for cracks having usual geometries and locations in major components. However, their evaluations still require a significant effort in the case of important deviations of the geometry of cracks regarding the usual semi-elliptical shape, or in the case of specific geometries of components, and specific locations of cracks in components. In these cases, time-consuming Finite Element meshes must be constructed, either manually or using semi-automatical tools, to represent the components and its defect(s). This method can become particularly costly, especially in the case of fatigue crack propagation. The eXtended-Finite Elements Method (X-FEM) has been proposed to overcome this issue. The representation of the defect is carried out by the level-set method, and specific enrichment functions are used to represent the solution near the crack surface and the crack front. This paper proposes a benchmark of numerical predictions of stress intensity factors using SYSTUS software [5]. It will be based on: a) Available analytical solutions; b) Classical Finite Element method; c) EXtended-Finite Elements Method. The classical case of a circular and elliptical crack in a semiinfinite body is first presented. Then the case of a circumferential crack in a valve under a thermo-mechanical loading is analyzed. The accuracy of the different methods is then compared and discussed.


2011 ◽  
Vol 462-463 ◽  
pp. 900-905 ◽  
Author(s):  
Hiroshi Okada ◽  
Hiroshi Kawai ◽  
Takashi Tokuda ◽  
Yasuyoshi Fukui

The authors have been developing a crack propagation analysis system that can deal with arbitrary shaped cracks in three-dimensional solids. The system is consisting of mesh generation software, a large-scale finite element analysis program and a fracture mechanics module. To evaluate the stress intensity factors, a Virtual Crack Closure-Integral Method (VCCM) for the second-order tetrahedral finite element is adopted and is included in the fracture mechanics module. The rate and direction of crack propagation are predicted using appropriate formulae based on the stress intensity factors.


Sign in / Sign up

Export Citation Format

Share Document