crack repair
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 50)

H-INDEX

14
(FIVE YEARS 4)

Author(s):  
Vinay Kumar ◽  
Rupinder Singh ◽  
Inderpreet Singh Ahuja

Construction is the part of human activity which is directly linked to urbanization for moving ahead on the path of growth and prosperity. Construction activities in past centuries are now part of our precious heritage. The repair and maintenance of heritage structures are of great importance for present-day researchers. One of the most common damage these century-long constructions faces are in form of surface cracks. In the present study, investigations were performed for a 3D printing-based customized solution for crack repair and maintenance of heritage structures. In this study, polyvinylidene fluoride (PVDF) polymer was reinforced with graphene (Gr) and Mn-doped ZnO nano-particles to prepare a smart composite material for crack repair and restoration. The composite was successfully 3D printed on fused deposition modeling (FDM) based 3D printer after investigating its rheological, thermal, and mechanical properties. The in-house developed composite was tested for smart characteristics to use as a programmable solution for filling cracks. The piezoelectric property and dielectric constant of 3D printed disk-shaped composite (PVDF-Gr-Mn-ZnO) were obtained after DC poling (to be used as stimulus) of the functional prototype. The results of the study suggest that the electro-active nature, volumetric change, and charge storing capacity of the additively manufactured composite may be used practically to acquire the shape of cavity/crack present in the constructed wall and repair the damages that occurred in a heritage site. The photoluminescence (PLS) and atomic force microscopy (AFM) analysis was used to ascertain the properties of the prepared composite. Also, the results obtained from the morphological analysis are reported to support the outcomes of the research.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012047
Author(s):  
Ming Xiao ◽  
Xiaojiang Sun ◽  
Huaqing Rong ◽  
Shuguang Bi ◽  
Jiagong Tang ◽  
...  

Abstract Epoxy structural adhesive has good mechanical properties, especially high adhesion, low shrinkage rate, and high stability, widely used in steel plate reinforcement, crack repair, bridge splicing, and concrete bonding, etc. However, due to the high cross-linking density and high internal stress after curing, its shortcomings, such as brittleness, the poor performance of fatigue resistance and heat resistance, limit its application in special track engineering. In this work, two kinds of epoxy structural adhesives (EPA-1, EPA-2) with low viscosity and room temperature curing were synthesized by selecting different bisphenol A epoxy resin and active diluent as component A and modified amine curing agent as component B. The results showed that EPA-1 and EPA-2 presented significant toughness compared with the classic construction adhesive (AralditeXH160). The yield strengths of EPA-1 and EPA-2 were 4.88 MPa and 13.13 MPa, and the shear strengths were 11.93 MPa and 13.08 MPa, respectively, showing good adhesive properties. In addition, the viscosities of EPA-1 and EPA-2 were 127 mPa·s and 308 mPa·s, respectively, and their decomposition temperatures were all above ∼280 °C, which indicated that the self-made epoxy structural adhesives could be used for the repair of cracks in the vibration subway tunnel.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Huien Meng ◽  
Wenwei Yang ◽  
Xia Yang

Real-time assessment of timber-surface crack repair is crucial to the stability and safety of timber structures. Epoxy resin was used to repair timber cracks, and the active sensing technique using piezoelectric ceramics was applied to monitor the repair process of timber surface cracks in real time. Sixteen wood samples were designed for axial compression tests and active monitoring tests. A pair of lead zirconate titanate patches was pasted on the surface of the timber specimens as actuators and sensors for signal transmission and reception, through wavelet packet analysis, the variations in the signal amplitude, and wavelet coefficients. The relationship between the wavelet packet energy of the monitoring signal and the ultimate bearing capacity of the specimens at different periods after grouting was established. Based on the root-mean-square deviation, the damage index, DI, was introduced to evaluate the repair degree of timber surface cracks quantitatively. The results showed that the active sensing method can evaluate the strength development in timber-surface crack repair in real time.


2021 ◽  
Vol 304 ◽  
pp. 124625
Author(s):  
Yun-feng Fang ◽  
Biao Ma ◽  
Kun Wei ◽  
Xiao-qing Wang ◽  
Xing-xiang Kang ◽  
...  

2021 ◽  
Vol 25 (Special) ◽  
pp. 3-43-3-56
Author(s):  
Arej K. Mahmod ◽  
◽  
Lubna A. Al-Jabbar ◽  
Mohammed M. Salman ◽  
◽  
...  

Concrete is one of the most commonly used building materials, and which is prone to cracking. The service life of concrete is significantly reduced due to these cracks. Replacement are High costs and difficulties in avoiding the cracks, various methods are in place to prevent crack formation such as filling in the gaps. It has been demonstrated current treatment methods of concrete are Chemical and polymer applications which they are a source of health and environmental issues, and they are only getting worse successful under some situations. As a result, environmentally sustainable treatment methods will be required in the near future. The potential for long-term, rapid, and active crack repair distinguishes the microbial self-healing method, which is also environmentally friendly. in addition, microbial self-healing Thanks to the effectiveness of this procedure, which out performs most treatment methods. Concrete compatibility and effective bonding capability assemblages. This paper gives an overview of the various microbial methods for producing calcium carbonate (CaCO3). Future challenges in microbial crack treatment are discussed, as well as recommendations for future research areas.


Author(s):  
Gehad Mokhtar ◽  
Ahmed Abd-El-Azim Ahmed ◽  
Amany M. Reyad

Abstract Background Reinforcement corrosion and the concrete strength reduction are critical problems that resulted from crack creation in concrete. Very expensive and hazardous technologies based on chemical materials have been provided for repairing the cracks. Recently, crack repair using bio-catalysis precipitating bacteria has been developed as a viable and ecofriendly alternative technique. The main target of this study was to select and identify bacterial isolates with high urease activity to use in filling the cracks by the precipitation of CaCO3. Results Two endospore-forming and alkali-resistant ureolytic bacteria were combined with concrete to tolerate the mechanical stresses generated by mixing. The two isolates designated as (B1 and B2) were selected and identified as Bacillus wiedmannii strain FSL W8-0169 and Bacillus paramycoides strain MCCC 1A04098, respectively, using 16SrDNA gene sequencing. Both bacterial species completely heal cracks in fully destructed concrete and significant enhancement in compressive strength was illustrated. The calcite filling of cracks and CaCO3 crystals that were screened using a scanning electron microscope may explain the crack healing and the enhancement in concrete strength. Conclusions Bacillus wiedmannii strain FSL W8-0169 and Bacillus paramycoides strain MCCC 1A04098 can be inserted with the concrete to improve the compressive strength and the self-healing of cracks. The two ureolytic bacterial strains can be used to protect water buildings from exposure to frequent cracks.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4569
Author(s):  
Yafeng Gong ◽  
Yunze Pang ◽  
Feng He ◽  
Haipeng Bi

Crack is the main distress of asphalt pavement. Sealant is one of the most commonly used crack repair materials, and its performance is the key to affect the service life of asphalt pavements. In order to find an efficient modifier and optimize the performances of crack sealants. In this paper, carbon nanotubes (CNTs) and styrene-butadiene-styrene (SBS) were used as modifiers to prepare CNTs/SBS composite-modified asphalt crack sealant. The properties of the sealant were tested to evaluate its suitability for crack repair, which included the viscosity, softening point, resilience recovery, cone penetration, flow value, penetration, aging resistance, and fatigue resistance. The results showed that the conventional properties of the sealants meet the requirements of the specification. In addition, after heating aging, the elastic recovery rate of the sealant containing more CNTs decreased only slightly. The sealant containing 1 wt% CNTs exhibited a higher viscosity, fatigue resistance, thermal aging resistance.


Sign in / Sign up

Export Citation Format

Share Document