scholarly journals The Final Fate of Coalescing Compact Binaries: From Black Hole to Planet Formation

Author(s):  
F. A. Rasio
Author(s):  
Jianwei Mei ◽  
Yan-Zheng Bai ◽  
Jiahui Bao ◽  
Enrico Barausse ◽  
Lin Cai ◽  
...  

Abstract TianQin is a planned space-based gravitational wave (GW) observatory consisting of three Earth-orbiting satellites with an orbital radius of about $10^5 \, {\rm km}$. The satellites will form an equilateral triangle constellation the plane of which is nearly perpendicular to the ecliptic plane. TianQin aims to detect GWs between $10^{-4} \, {\rm Hz}$ and $1 \, {\rm Hz}$ that can be generated by a wide variety of important astrophysical and cosmological sources, including the inspiral of Galactic ultra-compact binaries, the inspiral of stellar-mass black hole binaries, extreme mass ratio inspirals, the merger of massive black hole binaries, and possibly the energetic processes in the very early universe and exotic sources such as cosmic strings. In order to start science operations around 2035, a roadmap called the 0123 plan is being used to bring the key technologies of TianQin to maturity, supported by the construction of a series of research facilities on the ground. Two major projects of the 0123 plan are being carried out. In this process, the team has created a new-generation $17 \, {\rm cm}$ single-body hollow corner-cube retro-reflector which was launched with the QueQiao satellite on 21 May 2018; a new laser-ranging station equipped with a $1.2 \, {\rm m}$ telescope has been constructed and the station has successfully ranged to all five retro-reflectors on the Moon; and the TianQin-1 experimental satellite was launched on 20 December 2019—the first-round result shows that the satellite has exceeded all of its mission requirements.


2010 ◽  
Author(s):  
Alexander Gorbatsievich ◽  
Alexey Bobrik ◽  
Remo Ruffini ◽  
Gregory Vereshchagin

1999 ◽  
Vol 183 ◽  
pp. 163-163
Author(s):  
Hideyuki Tagoshi ◽  
Shuhei Mano ◽  
Eiichi Takasugi

Coalescing compact binaries are the most promising candidates for detection by near-future, ground based laser interferometric detectors. It is very important to investigate detailed wave forms from coalescing compact binaries. When one (or two) of the stars is a black hole, some of those waves are absorbed by the black hole. Here, we consider a case when a test particle moves circular orbit on the equatorial plane around a Kerr black hole, and calculate the the energy absorption rate by the black hole. We adopt an analytic techniques for the Teukolsky equation which was found by Mano, Suzuki, and Takasugi (1996). We calculated the energy absorption rate to O((v/c)13) beyond the Newtonian-quadrupole formula of gravitational waves radiated to infinity, assuming v/c ≪ 1. Here v is the velocity of the particle. We find that, when a black hole is rotating, the black hole absorption appear at O((v/c)5) beyond the Newtonian-quadrapole formula. These effects become more important as the mass of the black hole becomes larger. We also found that the black hole absorption is more important when a particle moves to the same direction of the black hole rotation. All the details of this paper is presented in Tagoshi et al. (1997).


2020 ◽  
Vol 644 ◽  
pp. A147
Author(s):  
Vitor Cardoso ◽  
Andrea Maselli

Aims. The dynamics of coalescing compact binaries can be affected by the environment in which the systems evolve, leaving detectable signatures in the emitted gravitational signal. In this paper, we investigate the ability of gravitational-wave detectors to constrain the nature of the environment in which compact binaries merge. Methods. We parametrized a variety of environmental effects by modifying the phase of the gravitational signal emitted by black hole and neutron star binaries. We infer the bounds on such effects by current and future generations of interferometers, studying their dependence on the binary’s parameters. Results. We show that the strong dephasing induced by accretion and dynamical friction can constrain the density of the surrounding medium to orders of magnitude below those of accretion disks. Planned detectors, such as LISA or DECIGO, will be able to probe densities typical of those of dark matter.


2010 ◽  
Vol 407 (3) ◽  
pp. 1946-1962 ◽  
Author(s):  
J. M. B. Downing ◽  
M. J. Benacquista ◽  
M. Giersz ◽  
R. Spurzem

2019 ◽  
Vol 51 (3) ◽  
Author(s):  
Eric Addison ◽  
Miguel Gracia-Linares ◽  
Pablo Laguna ◽  
Shane L. Larson

Sign in / Sign up

Export Citation Format

Share Document