Shock Waves in the Solar Wind

Author(s):  
A. J. Hundhausen
Keyword(s):  
1968 ◽  
Vol 73 (15) ◽  
pp. 4875-4881 ◽  
Author(s):  
Murray Dryer ◽  
Donald L. Jones

Atoms ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 104 ◽  
Author(s):  
Donald V. Reames

From a turbulent history, the study of the abundances of elements in solar energetic particles (SEPs) has grown into an extensive field that probes the solar corona and physical processes of SEP acceleration and transport. Underlying SEPs are the abundances of the solar corona, which differ from photospheric abundances as a function of the first ionization potentials (FIPs) of the elements. The FIP-dependence of SEPs also differs from that of the solar wind; each has a different magnetic environment, where low-FIP ions and high-FIP neutral atoms rise toward the corona. Two major sources generate SEPs: The small “impulsive” SEP events are associated with magnetic reconnection in solar jets that produce 1000-fold enhancements from H to Pb as a function of mass-to-charge ratio A/Q, and also 1000-fold enhancements in 3He/4He that are produced by resonant wave-particle interactions. In large “gradual” events, SEPs are accelerated at shock waves that are driven out from the Sun by wide, fast coronal mass ejections (CMEs). A/Q dependence of ion transport allows us to estimate Q and hence the source plasma temperature T. Weaker shock waves favor the reacceleration of suprathermal ions accumulated from earlier impulsive SEP events, along with protons from the ambient plasma. In strong shocks, the ambient plasma dominates. Ions from impulsive sources have T ≈ 3 MK; those from ambient coronal plasma have T = 1 – 2 MK. These FIP- and A/Q-dependences explore complex new interactions in the corona and in SEP sources.


2007 ◽  
Vol 328 (8) ◽  
pp. 734-737 ◽  
Author(s):  
I. Ballai ◽  
E. Forgács-Dajka ◽  
A. Marcu
Keyword(s):  

1974 ◽  
Vol 79 (22) ◽  
pp. 3103-3110 ◽  
Author(s):  
M. D. Montgomery ◽  
J. R. Asbridge ◽  
S. J. Bame ◽  
W. C. Feldman

1976 ◽  
Vol 41 (2) ◽  
pp. 481-490 ◽  
Author(s):  
V. B. Baranov ◽  
K. V. Krasnobaev ◽  
M. S. Ruderman

2020 ◽  
Author(s):  
Bertalan Zieger

<p>The solar wind in the heliosheath beyond the termination shock (TS) is a non-equilibrium collisionless plasma consisting of thermal solar wind ions, suprathermal pickup ions (PUI) and electrons. In such multi-ion plasma, two fast magnetosonic wave modes exist: the low-frequency fast mode that propagates in the thermal ion component and the high-frequency fast mode that propagates in the suprathermal PUI component [<em>Zieger et al.</em>, 2015]. Both fast modes are dispersive on fluid and ion scales, which results in nonlinear dispersive shock waves. In this talk, we briefly review the theory of dispersive shock waves in multi-ion collisionless plasma. We present high-resolution three-fluid simulations of the TS and the heliosheath up to 2.2 AU downstream of the TS. We show that downstream propagating nonlinear magnetosonic waves grow until they steepen into shocklets (thin current sheets), overturn, and start to propagate backward in the frame of the downstream propagating wave, as predicted by theory <em>[McKenzie et al</em>., 1993; <em>Dubinin et al.</em>, 2006]. The counter-propagating nonlinear waves result in fast magnetosonic turbulence far downstream of the shock. Since the high-frequency fast mode is positive dispersive on fluid scale, energy is transferred from small scales to large scales (inverse energy cascade). Thermal solar wind ions are preferentially heated by the turbulence. Forward and reverse shocklets in the heliosheath can efficiently accelerate both ions and electrons to high energies through the shock drift acceleration mechanism. We validate our three-fluid simulations with in-situ high-resolution Voyager 2 magnetic field and plasma observations at the TS and in the heliosheath. Our simulations reproduce the magnetic turbulence spectrum with a spectral slope of -5/3 observed by Voyager 2 in frequency domain [<em>Fraternale et al</em>., 2019]. However, since Taylor’s hypothesis is not true for fast magnetosonic perturbations in the heliosheath, the inertial range of the turbulence spectrum is not a Kolmogorov spectrum in wave number domain. </p>


1965 ◽  
Vol 70 (21) ◽  
pp. 5345-5351 ◽  
Author(s):  
P. A. Sturrock ◽  
J. R. Spreiter

Sign in / Sign up

Export Citation Format

Share Document