solar energetic particles
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 68)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Radoslav Bucik ◽  
Glenn Mason ◽  
Raul Gomez-Herrero ◽  
David Lario ◽  
Laura Balmaceda ◽  
...  

2021 ◽  
Author(s):  
Shrikanth G Kanekal ◽  
Christophe Royon ◽  
Doumerg W. d'Assignies ◽  
Florian Gautier ◽  
Ashley D Greeley ◽  
...  

2021 ◽  
Vol 922 (2) ◽  
pp. 200
Author(s):  
J. P. van den Berg ◽  
N. E. Engelbrecht ◽  
N. Wijsen ◽  
R. D. Strauss

Abstract Particle drifts perpendicular to the background magnetic field have been proposed by some authors as an explanation for the very efficient perpendicular transport of solar energetic particles (SEPs). This process, however, competes with perpendicular diffusion caused by magnetic turbulence, which can also disrupt the drift patterns and reduce the magnitude of drift effects. The latter phenomenon is well known in cosmic-ray studies, but not yet considered in SEP models. Additionally, SEP models that do not include drifts, especially for electrons, use turbulent drift reduction as a justification of this omission, without critically evaluating or testing this assumption. This article presents the first theoretical step for a theory of drift suppression in SEP transport. This is done by deriving the turbulence-dependent drift reduction function with a pitch-angle dependence, as is applicable for anisotropic particle distributions, and by investigating to what extent drifts will be reduced in the inner heliosphere for realistic turbulence conditions and different pitch-angle dependencies of the perpendicular diffusion coefficient. The influence of the derived turbulent drift reduction factors on the transport of SEPs are tested, using a state-of-the-art SEP transport code, for several expressions of theoretically derived perpendicular diffusion coefficients. It is found, for realistic turbulence conditions in the inner heliosphere, that cross-field diffusion will have the largest influence on the perpendicular transport of SEPs, as opposed to particle drifts.


2021 ◽  
Vol 84 (6) ◽  
pp. 1105-1113
Author(s):  
V. Kalegaev ◽  
K. Kaportseva ◽  
N. Nikolaeva ◽  
Yu. Shugay ◽  
N. Vlasova

Author(s):  
Donald V. Reames

The early 1970s saw a new and surprising feature in the composition of solar energetic particles (SEPs), resonant enhancements up to 10,000-fold in the ratio 3He/4He that could even make 3He dominant over H in rare events. It was soon learned that these events also had enhancements in the abundances of heavier elements, such as a factor of ∼10 enhancements in Fe/O, which was later seen to be part of a smooth increase in enhancements vs. mass-to-charge ratio A/Q from H to Pb, rising by a factor of ∼1000. These events were also associated with streaming 10–100 keV electrons that produce type III radio bursts. In recent years we have found these “impulsive” SEP events to be accelerated in islands of magnetic reconnection from plasma temperatures of 2–3 MK on open field lines in solar jets. Similar reconnection on closed loops traps the energy of the particles to produce hot (>10 MK), bright flares. Sometimes impulsive SEP intensities are boosted by shock waves when the jets launch fast coronal mass ejections. No single theory yet explains both the sharp resonance in 3He and the smooth increase up to heavier elements; two processes seem to occur. Sometimes the efficient acceleration even exhausts the rare 3He in the source region, limiting its fluence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moe Fujita ◽  
Tatsuhiko Sato ◽  
Susumu Saito ◽  
Yosuke Yamashiki

AbstractCosmic-ray exposure to flight crews and passengers, which is called aviation radiation exposure, is an important topic in radiological protection, particularly for solar energetic particles (SEP). We therefore assessed the risks associated with the countermeasure costs to reduce SEP doses and dose rates for eight flight routes during five ground level enhancements (GLE). A four-dimensional dose-rate database developed by the Warning System for Aviation Exposure to Solar Energetic Particles, WASAVIES, was employed in the SEP dose evaluation. As for the cost estimation, we considered two countermeasures; one is the cancellation of the flight, and the other is the reduction of flight altitudes. Then, we estimated the annual occurrence frequency of significant GLE events that would bring the maximum flight route dose and dose rate over 1.0 mSv and 80 μSv/h, respectively, based on past records of GLE as well as historically large events observed by the cosmogenic nuclide concentrations in tree rings and ice cores. Our calculations suggest that GLE events of a magnitude sufficient to exceed the above dose and dose rate thresholds, requiring a change in flight conditions, occur once every 47 and 17 years, respectively, and their conservatively-estimated annual risks associated with the countermeasure costs are up to around 1.5 thousand USD in the cases of daily-operated long-distance flights.


Sign in / Sign up

Export Citation Format

Share Document