Ambient Sound as a Probe of Ocean Surface Processes

Author(s):  
David M. Farmer
2021 ◽  
Vol 60 (4) ◽  
pp. 527-541
Author(s):  
Juan A. Crespo ◽  
Catherine M. Naud ◽  
Derek J. Posselt

AbstractLatent and sensible heat fluxes over the oceans are believed to play an important role in the genesis and evolution of marine-based extratropical cyclones (ETCs) and affect rapid cyclogenesis. Observations of ocean surface heat fluxes are limited from existing in situ and remote sensing platforms, which may not offer sufficient spatial and temporal resolution. In addition, substantial precipitation frequently veils the ocean surface around ETCs, limiting the capacity of spaceborne instruments to observe the surface processes within maturing ETCs. Although designed as a tropics-focused mission, the Cyclone Global Navigation Satellite System (CYGNSS) can observe ocean surface wind speed and heat fluxes within a notable quantity of low-latitude extratropical fronts and cyclones. These observations can assist in understanding how surface processes may play a role in cyclogenesis and evolution. This paper illustrates CYGNSS’s capability to observe extratropical cyclones manifesting in various ocean basins throughout the globe and shows that the observations provide a robust sample of ETCs winds and surface fluxes, as compared with a reanalysis dataset.


1996 ◽  
Vol 16 (10) ◽  
pp. 1307-1317 ◽  
Author(s):  
Ivan D. Lima ◽  
Carlos A.E. Garcia ◽  
Osmar O. Möller

2016 ◽  
Vol 33 (9) ◽  
pp. 2029-2052 ◽  
Author(s):  
Benjamin D. Reineman ◽  
Luc Lenain ◽  
W. Kendall Melville

AbstractThe deployment and recovery of autonomous or remotely piloted platforms from research vessels have become a way of significantly extending the capabilities and reach of the research fleet. This paper describes the use of ship-launched and ship-recovered Boeing–Insitu ScanEagle unmanned aerial vehicles (UAVs). The UAVs were instrumented to characterize the marine atmospheric boundary layer (MABL) structure and dynamics, and to measure ocean surface processes during the October 2012 Equatorial Mixing (EquatorMix) experiment in the central Pacific and during the July 2013 Trident Warrior experiment off the Virginia coast. The UAV measurements, including atmospheric momentum and radiative, sensible, and latent heat fluxes, are complemented by measurements from ship-based instrumentation, including a foremast MABL eddy-covariance system, lidar altimeters, and a digitized X-band radar system. During EquatorMix, UAV measurements reveal longitudinal atmospheric roll structures not sampled by ship measurements, which contribute significantly to vertical fluxes of heat and momentum. With the nadir-looking UAV lidar, surface signatures of internal waves are observed, consistent and coherent with measurements from ship-based X-band radar, a Hydrographic Doppler Sonar System, and a theoretical model. In the Trident Warrior experiment, the instrumented UAVs were used to demonstrate real-time data assimilation of meteorological data from UAVs into regional coupled ocean–atmosphere models. The instrumented UAVs have provided unprecedented spatiotemporal resolution in atmospheric and oceanographic measurements in remote ocean locations, demonstrating the capabilities of these platforms to extend the range and capabilities of the research fleet for oceanographic and atmospheric studies.


Author(s):  
D.M. Farmer ◽  
R.C. Teichrob ◽  
C.J. Elder ◽  
D.G. Sieberg

Sign in / Sign up

Export Citation Format

Share Document