Ultraviolet Study of 71 Tau, the Brightest X Source of the Hyades Cluster

Author(s):  
L. Pastori ◽  
E. Poretti ◽  
L. E. Pasinetti Fracassini ◽  
F. De Nile
Keyword(s):  
2020 ◽  
Vol 500 (3) ◽  
pp. 3920-3925
Author(s):  
Wolfgang Brandner ◽  
Hans Zinnecker ◽  
Taisiya Kopytova

ABSTRACT Only a small number of exoplanets have been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (≈45 pc) Hyades cluster. The observations were obtained with Near-Infrared Camera 1 (NIC1) in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations ≥0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main-sequence masses were >2.8 M⊙, was found. Comparison with evolutionary models yields detection limits of ≈5–7 Jupiter masses (MJup) according to one model, and between 9 and ≈12 MJup according to another model, at physical separations corresponding to initial semimajor axis of ≥5–8 au (i.e. before the mass-loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar discs, and their transformation into giant planets (with m ≥ 6 MJup and a ≥6 au). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than ≈3 M⊙.


2008 ◽  
Vol 52 (2) ◽  
pp. 94-98 ◽  
Author(s):  
S. V. Vereshchagin ◽  
V. G. Reva ◽  
N. V. Chupina
Keyword(s):  

2020 ◽  
Vol 640 ◽  
pp. A66 ◽  
Author(s):  
S. Freund ◽  
J. Robrade ◽  
P. C. Schneider ◽  
J. H. M. M. Schmitt

Aims. We revisit the X-ray properties of the main sequence Hyades members and the relation between X-ray emission and stellar rotation. Methods. As an input catalog for Hyades members, we combined three recent Hyades membership lists derived from Gaia DR2 data that include the Hyades core and its tidal tails. We searched for X-ray detections of the main sequence Hyades members in the ROSAT all-sky survey, and pointings from ROSAT, the Chandra X-Ray Observatory, and XMM-Newton. Furthermore, we adopted rotation periods derived from Kepler’s K2 mission and other resources. Results. We find an X-ray detection for 281 of 1066 bona fide main sequence Hyades members and provide statistical upper limits for the undetected sources. The majority of the X-ray detected stars are located in the Hyades core because of its generally smaller distance to the Sun. F- and G-type stars have the highest detection fraction (72%), while K- and M-type dwarfs have lower detection rates (22%). The X-ray luminosities of the detected members range from ∼2 × 1027 erg s−1 for late M-type dwarfs to ∼2 × 1030 erg s−1 for active binaries. The X-ray luminosity distribution functions formally differ for the members in the core and tidal tails, which is likely caused by a larger fraction of field stars in our Hyades tails sample. Compared to previous studies, our sample is slightly fainter in X-rays due to differences in the Hyades membership list used; furthermore, we extend the X-ray luminosity distribution to fainter luminosities. The X-ray activity of F- and G-type stars is well defined at FX/Fbol ≈ 10−5. The fractional X-ray luminosity and its spread increases to later spectral types reaching the saturation limit (FX/Fbol ≈ 10−3) for members later than spectral type M3. Confirming previous results, the X-ray flux varies by less than a factor of three between epochs for the 104 Hyades members with multiple epoch data, significantly less than expected from solar-like activity cycles. Rotation periods are found for 204 Hyades members, with about half of them being detected in X-rays. The activity-rotation relation derived for the coeval Hyades members has properties very similar to those obtained by other authors investigating stars of different ages.


1978 ◽  
pp. 151-154 ◽  
Author(s):  
Phillip J. Flower
Keyword(s):  

Star Clusters ◽  
1980 ◽  
pp. 71-80 ◽  
Author(s):  
Robert B. Hanson

2016 ◽  
Vol 830 (1) ◽  
pp. 49 ◽  
Author(s):  
Ann Merchant Boesgaard ◽  
Michael G. Lum ◽  
Constantine P. Deliyannis ◽  
Jeremy R. King ◽  
Marc H. Pinsonneault ◽  
...  
Keyword(s):  

1993 ◽  
Vol 139 ◽  
pp. 396-396
Author(s):  
L.E. Pasinetti Fracassini ◽  
L. Pastori ◽  
F. De Nile ◽  
E. Poretti ◽  
E. Antonello

IUE observations of δ Scuti variables were planned to study the correlations between chromospheric activity and dynamics of pulsations, convection, rotation and to search for evidence of mass loss. So far we observed the following stars: ρ Pup, β Cas, o1 Eri, K2 Boo, τ Peg, 69 Tau, 71 Tau and τ Cyg. Results and discussions on our survey may be found in Pasinetti Fracassini et al. (1990) and Fracassini et al. (1991).Ultraviolet spectroscopic data (6 LWP and 3 SWP spectra) of 71 Tau were obtained with IUE in the year 1990, spanning an interval of 5h35rn and covering about 1.5 cycles of the pulsation period. The period, derived from new photometric observations, is 4h32m with an cimplitude of 0m.028. This variable is the most intense X-ray source in the Hyades cluster according to the results of Einstein Observatory.


1993 ◽  
Vol 105 ◽  
pp. 220 ◽  
Author(s):  
Brian D. Mason ◽  
Harold A. McAlister ◽  
William I. Hartkopf ◽  
William G., Jr. Bagnuolo
Keyword(s):  

1986 ◽  
Vol 302 ◽  
pp. L49 ◽  
Author(s):  
A. M. Boesgaard ◽  
M. J. Tripicco
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document