stellar rotation
Recently Published Documents


TOTAL DOCUMENTS

523
(FIVE YEARS 130)

H-INDEX

46
(FIVE YEARS 10)

2021 ◽  
Vol 922 (2) ◽  
pp. 249
Author(s):  
Yongmin Yoon ◽  
Changbom Park ◽  
Haeun Chung ◽  
Kai Zhang

Abstract We study how stellar rotation curves (RCs) of galaxies are correlated on average with morphology and stellar mass (M star) using the final release of Sloan Digital Sky Survey IV MaNGA data. We use the visually assigned T-types for the morphology indicator, and adopt a functional form for the RC that can model non-flat RCs at large radii. We discover that within the radial coverage of the MaNGA data, the popularly known flat rotation curve at large radii applies only to the particular classes of galaxies, i.e., massive late types (T-type ≥ 1, M star ≳ 1010.8 M ⊙) and S0 types (T-type = −1 or 0, M star ≳ 1010.0 M ⊙). The RC of late-type galaxies at large radii rises more steeply as M star decreases, and its slope increases to about +9 km s−1 kpc−1 at M star ≈ 109.7 M ⊙. By contrast, elliptical galaxies (T-type ≤ −2) have descending RCs at large radii. Their slope becomes more negative as M star decreases, and reaches as negative as −15 km s−1 kpc−1 at M star ≈ 1010.2 M ⊙. We also find that the inner slope of the RC is highest for elliptical galaxies with M star ≈ 1010.5 M ⊙, and decreases as T-type increases or M star changes away from 1010.5 M ⊙. The velocity at the turnover radius R t is higher for higher M star, and R t is larger for higher M star and later T-types. We show that the inner slope of the RC is coupled with the central surface stellar mass density, which implies that the gravitational potential of central regions of galaxies is dominated by baryonic matter. With the aid of simple models for matter distribution, we discuss what determines the shapes of RCs.


2021 ◽  
Vol 923 (2) ◽  
pp. 177
Author(s):  
Javier Serna ◽  
Jesus Hernandez ◽  
Marina Kounkel ◽  
Ezequiel Manzo-Martínez ◽  
Alexandre Roman-Lopes ◽  
...  

Abstract We present a large-scale study of stellar rotation for T Tauri stars in the Orion star-forming complex. We use the projected rotational velocity ( v sin ( i ) ) estimations reported by the APOGEE-2 collaboration as well as individual masses and ages derived from the position of the stars in the HR diagram, considering Gaia-EDR3 parallaxes and photometry plus diverse evolutionary models. We find an empirical trend for v sin ( i ) decreasing with age for low-mass stars (0.4M ⊙ < M * < 1.2M ⊙). Our results support the existence of a mechanism linking v sin ( i ) to the presence of accreting protoplanetary disks, responsible for regulating stellar rotation on timescales of about 6 Myr, which is the timescale in which most of the T Tauri stars lose their inner disk. Our results provide important constraints to models of rotation in the early phases of evolution of young stars and their disks.


2021 ◽  
Vol 922 (2) ◽  
pp. 220
Author(s):  
Isaac D. Lopez ◽  
J. J. Hermes ◽  
Leila M. Calcaferro ◽  
Keaton J. Bell ◽  
Adam Samuels ◽  
...  

Abstract We report the discovery of pulsations in the extremely low-mass (ELM), likely helium-core white dwarf GD 278 via ground- and space-based photometry. GD 278 was observed by the Transiting Exoplanet Survey Satellite (TESS) in Sector 18 at a 2 minute cadence for roughly 24 days. The TESS data reveal at least 19 significant periodicities between 2447 and 6729 s, one of which is the longest pulsation period ever detected in a white dwarf. Previous spectroscopy found that this white dwarf is in a 4.61 hr orbit with an unseen >0.4 M ⊙ companion and has T eff = 9230 ± 100 K and log g = 6.627 ± 0.056 , which corresponds to a mass of 0.191 ± 0.013 M ⊙. Patterns in the TESS pulsation frequencies from rotational splittings appear to reveal a stellar rotation period of roughly 10 hr, making GD 278 the first ELM white dwarf with a measured rotation rate. The patterns inform our mode identification for asteroseismic fits, which, unfortunately, do not reveal a global best-fit solution. Asteroseismology reveals two main solutions roughly consistent with the spectroscopic parameters of this ELM white dwarf, but with vastly different hydrogen-layer masses; future seismic fits could be further improved by using the stellar parallax. GD 278 is now the tenth known pulsating ELM white dwarf; it is only the fifth known to be in a short-period binary, but is the first with extended, space-based photometry.


2021 ◽  
Vol 257 (2) ◽  
pp. 46
Author(s):  
Diego Godoy-Rivera ◽  
Marc H. Pinsonneault ◽  
Luisa M. Rebull

Abstract The period versus mass diagrams (i.e., rotational sequences) of open clusters provide crucial constraints for angular momentum evolution studies. However, their memberships are often heavily contaminated by field stars, which could potentially bias the interpretations. In this paper, we use data from Gaia DR2 to reassess the memberships of seven open clusters with ground- and space-based rotational data, and present an updated view of stellar rotation as a function of mass and age. We use the Gaia astrometry to identify the cluster members in phase space, and the photometry to derive revised ages and place the stars on a consistent mass scale. Applying our membership analysis to the rotational sequences reveals that: (1) the contamination in clusters observed from the ground can reach up to ∼35%; (2) the overall fraction of rotational outliers decreases substantially when the field contaminants are removed, but some outliers persist; (3) there is a sharp upper edge in the rotation periods at young ages; (4) at young ages, stars in the 1.0–0.6M ⊙ range inhabit a global maximum of rotation periods, potentially providing an optimal window for habitable planets. Additionally, we see clear evidence for a strongly mass-dependent spin-down process. In the regime where rapid rotators are leaving the saturated domain, the rotational distributions broaden (in contradiction with popular models), which we interpret as evidence that the torque must be lower for rapid rotators than for intermediate ones. The cleaned rotational sequences from ground-based observations can be as constraining as those obtained from space.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 440
Author(s):  
Richard de de Grijs ◽  
Devika Kamath

Cool stars with convective envelopes of spectral types F and later tend to exhibit magnetic activity throughout their atmospheres. The presence of strong and variable magnetic fields is evidenced by photospheric starspots, chromospheric plages and coronal flares, as well as by strong Ca ii H+K and Hα emission, combined with the presence of ultraviolet resonance lines. We review the drivers of stellar chromospheric activity and the resulting physical parameters implied by the observational diagnostics. At a basic level, we explore the importance of stellar dynamos and their activity cycles for a range of stellar types across the Hertzsprung–Russell diagram. We focus, in particular, on recent developments pertaining to stellar rotation properties, including the putative Vaughan–Preston gap. We also pay specific attention to magnetic variability associated with close binary systems, including RS Canum Venaticorum, BY Draconis, W Ursae Majoris and Algol binaries. At the present time, large-scale photometric and spectroscopic surveys are becoming generally available, thus leading to a resurgence of research into chromospheric activity. This opens up promising prospects to gain a much improved understanding of chromospheric physics and its wide-ranging impact.


2021 ◽  
Vol 257 (2) ◽  
pp. 22
Author(s):  
Weijia Sun ◽  
Xiao-Wei Duan ◽  
Licai Deng ◽  
Richard de Grijs ◽  
Bo Zhang ◽  
...  

2021 ◽  
Vol 921 (2) ◽  
pp. 145
Author(s):  
Weijia Sun ◽  
Xiao-Wei Duan ◽  
Licai Deng ◽  
Richard de Grijs

Abstract Angular momentum is a key property regulating star formation and evolution. However, the physics driving the distribution of the stellar rotation rates of early-type main-sequence stars is as yet poorly understood. Using our catalog of 40,034 early-type stars with homogeneous v sin i parameters, we review the statistical properties of their stellar rotation rates. We discuss the importance of possible contaminants, including binaries and chemically peculiar stars. Upon correction for projection effects and rectification of the error distribution, we derive the distributions of our sample’s equatorial rotation velocities, which show a clear dependence on stellar mass. Stars with masses less than 2.5 M ⊙ exhibit a unimodal distribution, with the peak velocity ratio increasing as stellar mass increases. A bimodal rotation distribution, composed of two branches of slowly and rapidly rotating stars, emerges for more massive stars (M > 2.5 M ⊙). For stars more massive than 3.0 M ⊙, the gap between the bifurcated branches becomes prominent. For the first time, we find that metal-poor ([M/H] < −0.2 dex) stars only exhibit a single branch of slow rotators, while metal-rich ([M/H] > 0.2 dex) stars clearly show two branches. The difference could be attributed to unexpectedly high spin-down rates and/or in part strong magnetic fields in the metal-poor subsample.


Sign in / Sign up

Export Citation Format

Share Document