δ scuti stars
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
H Netzel ◽  
P Pietrukowicz ◽  
I Soszyński ◽  
M Wrona

Abstract We have performed a frequency analysis of 10,092 δ Scuti-type stars detected in the fourth phase of the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic bulge, which is the most numerous homogeneous sample of δ Scuti stars observed so far. The main goal was to search for stars pulsating in at least two radial modes simultaneously. We have found 3083 candidates for such stars, which is the largest set obtained to date. Among them, 2655 stars pulsate in two radial modes, 414 stars pulsate in three radial modes, and 14 stars pulsate in four radial modes at the same time. We report the identification of 221 δ Scuti stars pulsating in the fundamental mode, first overtone, and third overtone simultaneously. We show the most populated Petersen and Bailey diagrams and discuss statistical properties of the identified frequencies based on this numerous sample. Additionally, we present theoretical predictions of period ratios for δ Scuti stars pulsating in overtones from the fourth to the seventh.


2021 ◽  
Vol 133 (1026) ◽  
pp. 084201
Author(s):  
Atila Poro ◽  
Ehsan Paki ◽  
Golnaz Mazhari ◽  
Soroush Sarabi ◽  
Filiz Kahraman Alicavus ◽  
...  

2020 ◽  
Vol 500 (2) ◽  
pp. 1992-1999
Author(s):  
K Thomson-Paressant ◽  
C Neiner ◽  
K Zwintz ◽  
A Escorza

ABSTRACT Only three magnetic δ Scuti stars are known as of today. HD 41641 is a δ Scuti star showing chemical peculiarities and rotational modulation of its light curve, making it a good magnetic candidate. We acquired spectropolarimetric observations of this star with NARVAL at Télescope Bernard Lyot (TBL) to search for the presence of a magnetic field and characterize it. We indeed clearly detect a magnetic field in HD 41641, making it the fourth known magnetic δ Scuti star. Our analysis shows that the field is of fossil origin, like magnetic OBA stars, but with a complex field structure rather than the much more usual dipolar structure.


Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Alexios Liakos ◽  
Panagiotis Niarchos

The present work concerns the Asteroseismology of the Kepler-detached eclipsing binary KIC 8504570. Particularly, it focuses on the pulsational behaviour of the oscillating component of this system and the estimation of its physical parameters in order to enrich the so far poor sample of systems of this kind. Using spectroscopic observations, the spectral type of the primary component was determined and used to create accurate light curve models and estimate its absolute parameters. The light curve residuals were subsequently analysed using Fourier transformation techniques to obtain the pulsation models. Theoretical models of δ Scuti stars were employed to identify the oscillation modes of the six detected independent frequencies of the pulsator. In addition, more than 385 combination frequencies were also detected. The absolute and the pulsational properties of the δ Scuti star of this system are discussed and compared with all the currently known similar cases. Moreover, using a recent(empirical) luminosity–pulsation period relationship for δ Scuti stars, the distance of the system was estimated.


2020 ◽  
Vol 498 (2) ◽  
pp. 1700-1709
Author(s):  
J E Rodríguez-Martín ◽  
A García Hernández ◽  
J C Suárez ◽  
J R Rodón

ABSTRACT The large separation in the low-radial order regime is considered as a highly valuable observable to derive mean densities of δ Scuti stars, due to its independence with rotation. Up to now, theoretical studies of this Δν–${\bar{\rho}}$ relation have been limited to 1D non-rotating models and 2D pseudo-evolutionary models. The present work aims at completing this scenario by investigating quantitatively the impact of rotation in this relation on a large grid of 1D asteroseismic models representative of δ Scuti stars. These include rotation effects on both the stellar evolution and the interaction with pulsation. This allowed us to compute the stellar deformation, get the polar and equatorial radii, and correct the stellar mean densities. We found that the new Δν–${\bar{\rho}}$ relation for rotating models is compatible with previous works. We explained the dispersion of the points around the linear fits as caused mainly by the distribution of the stellar mass, and partially by the evolutionary stage. The new fit is found to be close to the previous theoretical studies for lower masses ($1.3\!-\!1.81\, \mathrm{M}_{\odot }$). However, the opposite holds for the observations: For the higher masses ($1.81\!-\!3\, \mathrm{M}_{\odot }$), the fit is more compatible with the empirical relation. To avoid such discrepancies, we provided new limits to the fit that encompass any possible dependence on mass. We applied these results to characterize the two well-known δ Scuti stars observed by CoRoT, HD 174936 and HD 174966, and compared the physical parameters with those of previous works. The inclusion of rotation in the modelling causes a tendency towards greater masses, radii, and luminosities, and lower density values. Comparison between Δν and Gaia’s luminosities also allowed us to constrain the inclination angles and rotational velocities of both stars. The present results pave the way to systematically constrain the angle of inclination (and thereby the actual surface rotation velocity) of δ Scuti stars.


2020 ◽  
Vol 638 ◽  
pp. A59 ◽  
Author(s):  
S. Barceló Forteza ◽  
A. Moya ◽  
D. Barrado ◽  
E. Solano ◽  
S. Martín-Ruiz ◽  
...  

Thanks to high-precision photometric data legacy from space telescopes like CoRoT and Kepler, the scientific community could detect and characterize the power spectra of hundreds of thousands of stars. Using the scaling relations, it is possible to estimate masses and radii for solar-type pulsators. However, these stars are not the only kind of stellar objects that follow these rules: δ Scuti stars seem to be characterized with seismic indexes such as the large separation (Δν). Thanks to long-duration high-cadence TESS light curves, we analysed more than two thousand of this kind of classical pulsators. In that way, we propose the frequency at maximum power (νmax) as a proper seismic index since it is directly related with the intrinsic temperature, mass and radius of the star. This parameter seems not to be affected by rotation, inclination, extinction or resonances, with the exception of the evolution of the stellar parameters. Furthermore, we can constrain rotation and inclination using the departure of temperature produced by the gravity-darkening effect. This is especially feasible for fast rotators as most of δ Scuti stars seem to be.


2020 ◽  
Vol 495 (2) ◽  
pp. 1888-1912
Author(s):  
S J Murphy ◽  
E Paunzen ◽  
T R Bedding ◽  
P Walczak ◽  
D Huber

ABSTRACT We analyse TESS light curves for 70 southern λ Boo stars to identify binaries and to determine which of them pulsate as δ Scuti stars. We find two heartbeat stars and two eclipsing binaries among the sample. We calculate that 81 per cent of λ Boo stars pulsate as δ Sct variables, which is about twice that of normal stars over the same parameter space. We determine the temperatures and luminosities of the λ Boo stars from photometry and Gaia DR2 parallaxes. A subset of 40 λ Boo stars have 2-min TESS data, reliable temperatures and luminosities, and δ Sct pulsation. We use Petersen diagrams (period ratios), échelle diagrams, and the period–luminosity relation to identify the fundamental mode in 20 of those 40 stars and conclude that a further 8 stars are not pulsating in this mode. For the remaining 12, the fundamental mode cannot be unambiguously identified. Further mode identification is possible for 12 of the fundamental mode pulsators that have regular sequences of pulsation overtones in their échelle diagrams. We use stellar evolution models to determine statistically that the λ Boo stars are only superficially metal weak. Simple pulsation models also better fit the observations at a metallicity of Z = 0.01 than at Z = 0.001. The TESS observations reveal the great potential of asteroseismology on λ Boo stars, for determining precise stellar ages and shedding light on the origin(s) of the λ Boo phenomenon.


Nature ◽  
2020 ◽  
Vol 581 (7807) ◽  
pp. 141-142
Author(s):  
József M. Benkő ◽  
Margit Paparó
Keyword(s):  

2020 ◽  
Vol 493 (4) ◽  
pp. 5382-5388
Author(s):  
Simon J Murphy ◽  
Nicholas H Barbara ◽  
Daniel Hey ◽  
Timothy R Bedding ◽  
Ben D Fulcher

ABSTRACT Measuring phase modulation in pulsating stars has proven to be a highly successful way of finding binary systems. The class of pulsating main-sequence A and F variables, known as δ Scuti stars consists of particularly good targets for this, and the Kepler sample of these has been almost fully exploited. However, some Keplerδ Scuti stars have incorrect temperatures in stellar properties catalogues, and were missed in previous analyses. We used an automated pulsation classification algorithm to find 93 new δ Scuti pulsators among tens of thousands of F-type stars, which we then searched for phase modulation attributable to binarity. We discovered 10 new binary systems and calculated their orbital parameters, which we compared with those of binaries previously discovered in the same way. The results suggest that some of the new companions may be white dwarfs.


2020 ◽  
Vol 493 (3) ◽  
pp. 4186-4208 ◽  
Author(s):  
T Jayasinghe ◽  
K Z Stanek ◽  
C S Kochanek ◽  
P J Vallely ◽  
B J Shappee ◽  
...  

ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $\rm [Fe/H]\lt -0.3$ and log10(P) ∼ −0.9 for $\rm [Fe/H]\gt 0$, which leads to a period-dependent scale height. Stars with $P\gt 0.100\, \rm d$ are predominantly located close to the Galactic disc ($\rm |\mathit{ Z}|\lt 0.5\, kpc$). The median period at a scale height of $Z\sim 0\, \rm kpc$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $R\gt 9\, \rm kpc$ to log10(P) ∼ −0.85 for sources with $R\lt 7\, \rm kpc$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discovered by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively.


Sign in / Sign up

Export Citation Format

Share Document