Residential energy demand — the evolution and future potential of natural gas in Western Europe

Author(s):  
Sarita Bartlett ◽  
Steinar Strøm ◽  
Øystein Olsen
Author(s):  
Sergio Mario Camporeale ◽  
Patrizia Domenica Ciliberti ◽  
Bernardo Fortunato ◽  
Marco Torresi ◽  
Antonio Marco Pantaleo

Small scale Combined Heat and Power (CHP) plants present lower electric efficiency in comparison to large scale ones, and this is particularly true when biomass fuels are used. In most cases, the use of both heat and electricity to serve on site energy demand is a key issue to achieve acceptable global energy efficiency and investment profitability. However, the heat demand follows a typical daily and seasonal pattern and is influenced by climatic conditions, in particular in the case of residential and tertiary end users. During low heat demand periods, a lot of heat produced by the CHP plant is discharged. In order to increase the electric conversion efficiency of small scale micro turbine for heat and power cogeneration, a bottoming ORC system can be coupled to the cycle, however this option reduces the temperature and quantity of cogenerated heat available to the load. In this perspective, the paper presents the results of a thermo-economic analysis of small scale CHP plants composed by a micro gas turbine (MGT) and a bottoming Organic Rankine Cycle (ORC), serving a typical residential energy demand. For the topping cycle three different configurations are examined: 1) a simple recuperative micro gas turbine fuelled by natural gas (NG), 2) a dual fuel EFGT cycle, fuelled by biomass and natural gas (50% energy input) (DF) and 3) an externally fired gas turbine (EFGT) with direct combustion of biomass (B). The bottoming cycle is a simple saturated Rankine cycle with regeneration and no superheating. The ORC cycle and the fluid selection are optimized on the basis of the available exhaust gas temperature at the turbine exit. The research assesses the influence of the thermal energy demand typology (residential demand with cold, mild and hot climate conditions) and CHP plant operational strategies (baseload vs heat driven vs electricity driven operation mode) on the global energy efficiency and profitability of the following three configurations: A) MGT with cogeneration; B) MGT+ ORC without cogeneration; C) MGT+ORC with cogeneration. In all cases, a back-up boiler is assumed to match the heat demand of the load (fed by natural gas or biomass). The research explores the profitability of bottoming ORC in view of the following tradeoffs: (i) lower energy conversion efficiency and higher investment cost of high biomass input rate with respect to natural gas; (ii) higher efficiency but higher costs and reduced heat available for cogeneration in the bottoming ORC; (ii) higher primary energy savings and revenues from feed-in tariff available for biomass electricity fed into the grid.


Author(s):  
Sergio Mario Camporeale ◽  
Patrizia Domenica Ciliberti ◽  
Bernardo Fortunato ◽  
Marco Torresi ◽  
Antonio Marco Pantaleo

Small-scale combined heat and power (CHP) plants present lower electric efficiency in comparison to large scale ones, and this is particularly true when biomass fuels are used. In most cases, the use of both heat and electricity to serve on-site energy demand is a key issue to achieve acceptable global energy efficiency and investment profitability. However, the heat demand follows a typical daily and seasonal pattern and is influenced by climatic conditions, in particular in the case of residential and tertiary end users. During low heat demand periods, a lot of heat produced by the CHP plant is discharged. In order to increase the electric conversion efficiency of small-scale micro-gas turbine for heat and power cogeneration, a bottoming organic Rankine cycle (ORC) system can be coupled to the cycle, however, this option reduces the temperature and the amount of cogenerated heat available to the thermal load. In this perspective, the paper presents the results of a thermo-economic analysis of small-scale CHP plants composed of a micro-gas turbine (MGT) and a bottoming ORC, serving a typical residential energy demand. For the topping cycle, three different configurations are examined: (1) a simple recuperative micro-gas turbine fueled by natural gas (NG); (2) a dual fuel externally fired gas turbine (EFGT) cycle, fueled by biomass and natural gas (50% share of energy input) (DF); and (3) an externally fired gas turbine (EFGT) with direct combustion of biomass (B). The bottoming ORC is a simple saturated cycle with regeneration and no superheating. The ORC cycle and the fluid selection are optimized on the basis of the available exhaust gas temperature at the turbine exit. The research assesses the influence of the thermal energy demand typology (residential demand with cold, mild, and hot climate conditions) and CHP plant operational strategies (baseload versus heat-driven versus electricity-driven operation mode) on the global energy efficiency and profitability of the following three configurations: (A) MGT with cogeneration; (B) MGT+ ORC without cogeneration; and (C) MGT+ORC with cogeneration. In all cases, a back-up boiler is assumed to match the heat demand of the load (fed by natural gas or biomass). The research explores the profitability of bottoming ORC in view of the following trade-offs: (i) lower energy conversion efficiency and higher investment cost of biomass input with respect to natural gas; (ii) higher efficiency but higher costs and reduced heat available for cogeneration with the bottoming ORC; and (iii) higher primary energy savings and revenues from feed-in tariff available for biomass electricity fed into the grid.


2021 ◽  
Vol 167 (1-2) ◽  
Author(s):  
Jens Ewald ◽  
Thomas Sterner ◽  
Eoin Ó Broin ◽  
Érika Mata

AbstractA zero-carbon society requires dramatic change everywhere including in buildings, a large and politically sensitive sector. Technical possibilities exist but implementation is slow. Policies include many hard-to-evaluate regulations and may suffer from rebound mechanisms. We use dynamic econometric analysis of European macro data for the period 1990–2018 to systematically examine the importance of changes in energy prices and income on residential energy demand. We find a long-run price elasticity of −0.5. The total long-run income elasticity is around 0.9, but if we control for the increase in income that goes towards larger homes and other factors, the income elasticity is 0.2. These findings have practical implications for climate policy and the EU buildings and energy policy framework.


Author(s):  
Xavier Labandeira ◽  
J. Maria Labeaga Azcona ◽  
Miguel Rodr�guez M�ndez

Sign in / Sign up

Export Citation Format

Share Document