Transposable element contributions to plant gene and genome evolution

2000 ◽  
pp. 251-269 ◽  
Author(s):  
Jeffrey L. Bennetzen
2021 ◽  
pp. 1-8
Author(s):  
Naiara P. Araújo ◽  
Radarane S. Sena ◽  
Cibele R. Bonvicino ◽  
Gustavo C.S. Kuhn ◽  
Marta Svartman

<i>Proechimys</i> species are remarkable for their extensive chromosome rearrangements, representing a good model to understand genome evolution. Herein, we cytogenetically analyzed 3 different cytotypes of <i>Proechimys</i> gr. <i>goeldii</i> to assess their evolutionary relationship. We also mapped the transposable element SINE-B1 on the chromosomes of <i>P.</i> gr. <i>goeldii</i> in order to investigate its distribution among individuals and evaluate its possible contribution to karyotype remodeling in this species. SINE-B1 showed a dispersed distribution along chromosome arms and was also detected at the pericentromeric regions of some chromosomes, including pair 1 and the sex chromosomes, which are involved in chromosome rearrangements. In addition, we describe a new cytotype for <i>P.</i> gr. <i>goeldii</i>, reinforcing the significant role of gross chromosomal rearrangements during the evolution of the genus. The results of FISH with SINE-B1 suggest that this issue should be more deeply investigated for a better understanding of its role in the mechanisms involved in the wide variety of <i>Proechimys</i> karyotypes.


2001 ◽  
Vol 11 (8) ◽  
pp. R296-R299 ◽  
Author(s):  
Stephen Wright ◽  
David Finnegan

2014 ◽  
Author(s):  
Robert Kofler ◽  
Viola Nolte ◽  
Christian Schlötterer

The evolutionary dynamics of transposable element (TE) insertions have been of continued interest since TE activity has important implications for genome evolution and adaptation. Here, we infer the transposition dynamics of TEs by comparing their abundance in natural D. melanogaster and D. simulans populations. Sequencing pools of more than 550 South African flies to at least 320-fold coverage, we determined the genome wide TE insertion frequencies in both species. We show that 46 (49%) TE families in D. melanogaster and 44 (47%) in D. simulans experienced a recent burst of activity. The bursts of activity affected different TE families in the two species. While in D. melanogaster retrotransposons predominated, DNA transposons showed higher activity levels in D. simulans. We propose that the observed TE dynamics are the outcome of the demographic history of the two species, with habitat expansion triggering a period of rapid evolution.


Sign in / Sign up

Export Citation Format

Share Document