LiNi(M)O2 Layered Oxides: Positive Electrode Materials for Lithium Batteries

Author(s):  
A. Rougier ◽  
C. Delmas
2013 ◽  
Vol 06 (01) ◽  
pp. 1330001 ◽  
Author(s):  
JING XU ◽  
DAE HOE LEE ◽  
YING SHIRLEY MENG

Significant progress has been achieved in the research on sodium intercalation compounds as positive electrode materials for Na-ion batteries. This paper presents an overview of the breakthroughs in the past decade for developing high energy and high power cathode materials. Two major classes, layered oxides and polyanion compounds, are covered. Their electrochemical performance and the related crystal structure, solid state physics and chemistry are summarized and compared.


2019 ◽  
Vol 73 (11) ◽  
pp. 880-893 ◽  
Author(s):  
Nam Hee Kwon ◽  
Joanna Conder ◽  
Mohammed Srout ◽  
Katharina M. Fromm

Lithium ion batteries are typically based on one of three positive-electrode materials, namely layered oxides, olivine- and spinel-type materials. The structure of any of them is 'resistant' to electrochemical cycling, and thus, often requires modification/post-treatment to improve a certain property, for example, structural stability, ionic and/or electronic conductivity. This review provides an overview of different examples of coatings and surface modifications used for the positive-electrode materials as well as various characterization techniques often chosen to confirm/detect the introduced changes. It also assesses the electrochemical success of the surface-modified positive-electrode materials, thereby highlighting remaining challenges and pitfalls.


2017 ◽  
Vol 54 (1) ◽  
pp. 55-63
Author(s):  
Amel Salamani ◽  
Abdallah Merrouche ◽  
Laid Telli ◽  
Pedro Gómez-Romero ◽  
Zahilia Caban Huertas

Sign in / Sign up

Export Citation Format

Share Document