Distributed-Feedback Semiconductor Lasers

Author(s):  
Govind P. Agrawal ◽  
Niloy K. Dutta
1990 ◽  
Vol 56 (17) ◽  
pp. 1620-1622 ◽  
Author(s):  
Y. Luo ◽  
Y. Nakano ◽  
K. Tada ◽  
T. Inoue ◽  
H. Hosomatsu ◽  
...  

1978 ◽  
Vol 8 (12) ◽  
pp. 1500-1501
Author(s):  
V I Borodulin ◽  
Yu A Bykovskiĭ ◽  
I G Goncharov ◽  
A P Grachev ◽  
K B Dedushenko ◽  
...  

2020 ◽  
Vol 10 (10) ◽  
pp. 3631
Author(s):  
Jiayi Zhao ◽  
Jingjing Hu ◽  
Pengcheng Deng ◽  
Runze Yu ◽  
Ruoxian Liu ◽  
...  

In this paper, a novel approach to achieving a wideband tunable dual-passband microwave photonic filter (MPF) is proposed based on optical-injected distributed feedback (DFB) semiconductor lasers and a dual-output Mach–Zehnder modulator (DOMZM). The fundamental concepts for realizing the MPF are the wavelength-selective amplification effect and the period-one oscillation state under optically injected DFB lasers. These effects provide a widely tunable range of center frequency, along with high flexibility and low insertion loss. The proposed MPF is experimentally demonstrated, showing that the dual-passband center frequency in the MPF can be tuned independently from 19 to 37 GHz by adjusting the detuning frequency and injection ratio. Meanwhile, the insertion loss of the system is about 15 dB when there is no optical or electrical amplifier in the MPF link. The out-of-band suppression ratio of the MPF is more than 20 dB, which can be improved by adjusting the power of the two optical signals.


Sign in / Sign up

Export Citation Format

Share Document