Distances and Radii of Classical Cepheids

1980 ◽  
pp. 479-482 ◽  
Author(s):  
Thomas G. Barnes
Keyword(s):  
1987 ◽  
Vol 122 ◽  
pp. 227-228
Author(s):  
C. J. Butler ◽  
H. P. Deasy ◽  
P. A. Wayman

IRAS observations of sources identified with cepheid variables are used to give estimates of observed mass-loss rates for those stars.


2012 ◽  
Vol 8 (S289) ◽  
pp. 282-286 ◽  
Author(s):  
G. Fiorentino ◽  
F. Annibali ◽  
G. Clementini ◽  
R. Contreras Ramos ◽  
M. Marconi ◽  
...  

AbstractWe present a project that aims to provide a complete theoretical and observational framework for an as yet unexplored class of variable stars, the ultralong-period Cepheids (P longer than 80–100 days). Given their very high luminosities (MV up to −7 mag), with the Hubble Space Telescope we will be able to observe them easily in stellar systems located at large distances (~ 100 Mpc). This limit will be further increased, out to the Hubble flow (~ 350 Mpc), using future ground-based facilities such as the European Extremely Large Telescope. The nature of their pulsation is as yet unclear, as is their evolutionary status, which seems different from the central helium-burning phase generally associated with classical Cepheids. These objects have been found to cover a very large metallicity range, from [Fe/H] ~ −2 dex to solar values, and they are located in heterogeneous stellar systems, from dwarf to spiral galaxies. Once completely characterized, they could provide a crucial test, since they have been found in all Type Ia supernova host spiral galaxies that have been monitored for variability over long periods and that currently offer sound constraints on the estimated value of the Hubble constant.


2012 ◽  
Vol 426 (1) ◽  
pp. 398-401 ◽  
Author(s):  
V. V. Kovtyukh ◽  
R. E. Luck ◽  
F. A. Chekhonadskikh ◽  
S. I. Belik

2014 ◽  
Vol 563 ◽  
pp. L4 ◽  
Author(s):  
Hilding R. Neilson ◽  
Richard Ignace
Keyword(s):  

2018 ◽  
Vol 616 ◽  
pp. A82 ◽  
Author(s):  
B. Proxauf ◽  
R. da Silva ◽  
V. V. Kovtyukh ◽  
G. Bono ◽  
L. Inno ◽  
...  

We gathered more than 1130 high-resolution optical spectra for more than 250 Galactic classical Cepheids. The spectra were collected with the optical spectrographs UVES at VLT, HARPS at 3.6 m, FEROS at 2.2 m MPG/ESO, and STELLA. To improve the effective temperature estimates, we present more than 150 new line depth ratio (LDR) calibrations that together with similar calibrations already available in the literature allowed us to cover a broad range in wavelength (5348 ≤ λ ≤ 8427 Å) and in effective temperature (3500 ≤ Teff ≤ 7700 K). This gives us the unique opportunity to cover both the hottest and coolest phases along the Cepheid pulsation cycle and to limit the intrinsic error on individual measurements at the level of ~100 K. As a consequence of the high signal-to-noise ratio of individual spectra, we identified and measured hundreds of neutral and ionized lines of heavy elements, and in turn, have the opportunity to trace the variation of both surface gravity and microturbulent velocity along the pulsation cycle. The accuracy of the physical parameters and the number of Fe I (more than one hundred) and Fe II (more than ten) lines measured allowed us to estimate mean iron abundances with a precision better than 0.1 dex. We focus on 14 calibrating Cepheids for which the current spectra cover either the entire or a significant portion of the pulsation cycle. The current estimates of the variation of the physical parameters along the pulsation cycle and of the iron abundances agree very well with similar estimates available in the literature. Independent homogeneous estimates of both physical parameters and metal abundances based on different approaches that can constrain possible systematics are highly encouraged.


2015 ◽  
Vol 101 ◽  
pp. 06062
Author(s):  
L. Szabados ◽  
N. R. Evans ◽  
R. Szabó ◽  
A. Derekas ◽  
A. Cameron ◽  
...  
Keyword(s):  

2011 ◽  
Vol 66 (1) ◽  
pp. 47-53 ◽  
Author(s):  
A. S. Rastorguev ◽  
A. K. Dambis
Keyword(s):  

2015 ◽  
Vol 576 ◽  
pp. A30 ◽  
Author(s):  
L. Inno ◽  
N. Matsunaga ◽  
M. Romaniello ◽  
G. Bono ◽  
A. Monson ◽  
...  

2004 ◽  
Vol 193 ◽  
pp. 502-505
Author(s):  
M. Marconi ◽  
G. Bono ◽  
T.E. Nordgren

Abstract We present the period-radius relations predicted by nonlinear convective models of Classical Cepheids and RR Lyrae stars. For the former variables we show that the metallicity effect is negligible for both fundamental and first overtone pulsators. This confirms the power of the period-radius relation to estimate Cepheid radii and in turn distances. For the latter class of variables we show that the dispersion of the period-radius relation of both fundamental and first overtone pulsators is significantly reduced once the metallicity dependence is taken into account. This provides a robust method to evaluate the radius of observed RR Lyrae with measured period and metal abundance.


Sign in / Sign up

Export Citation Format

Share Document