A Novel Differential Evolution Test Case Optimisation (DETCO) Technique for Branch Coverage Fault Detection

Author(s):  
Vibhor Gupta ◽  
Avneet Singh ◽  
Kapil Sharma ◽  
Himanshu Mittal

Regression testing is performed to make conformity that any changes in software program do not disturb the existing characteristics of the software. As the software improves, the test case tends to grow in size that makes it very costly to be executed, and thus the test cases are needed to be prioritized to select the effective test cases for software testing. In this paper, a test case prioritization technique in regression testing is proposed using a novel optimization algorithm known as Taylor series-based Jaya Optimization Algorithm (Taylor-JOA), which is the integration of Taylor series in Jaya Optimization Algorithm (JOA). The optimal test cases are selected based on the fitness function, modelled depending on the constraints, namely fault detection and branch coverage. The experimentation of the proposed Taylor-JOA is performed with the consideration of the evaluation metrics, namely Average Percentage of Fault Detected (APFD) and the Average Percentage of Branch Coverage (APBC). The APFD and the APBC of the proposed Taylor-JOA is 0.995, and 0.9917, respectively, which is high as compared to the existing methods that show the effectiveness of the proposed Taylor-JOA in the task of test case prioritization


Regression testing is one of the most critical testing activities among software product verification activities. Nevertheless, resources and time constraints could inhibit the execution of a full regression test suite, hence leaving us in confusion on what test cases to run to preserve the high quality of software products. Different techniques can be applied to prioritize test cases in resource-constrained environments, such as manual selection, automated selection, or hybrid approaches. Different Multi-Objective Evolutionary Algorithms (MOEAs) have been used in this domain to find an optimal solution to minimize the cost of executing a regression test suite while obtaining maximum fault detection coverage as if the entire test suite was executed. MOEAs achieve this by selecting set of test cases and determining the order of their execution. In this paper, three Multi Objective Evolutionary Algorithms, namely, NSGA-II, IBEA and MoCell are used to solve test case prioritization problems using the fault detection rate and branch coverage of each test case. The paper intends to find out what’s the most effective algorithm to be used in test cases prioritization problems, and which algorithm is the most efficient one, and finally we examined if changing the fitness function would impose a change in results. Our experiment revealed that NSGA-II is the most effective and efficient MOEA; moreover, we found that changing the fitness function caused a significant reduction in evolution time, although it did not affect the coverage metric.


Author(s):  
Rongcun Wang ◽  
Zhengmin Li ◽  
Shujuan Jiang ◽  
Chuanqi Tao

Regression testing is a very time-consuming and expensive testing activity. Many test case prioritization techniques have been proposed to speed up regression testing. Previous studies show that no one technique is always best. Random strategy, as the simplest strategy, is not always so bad. Particularly, when a test suite has higher fault detection capability, the strategy can generate a better result. Nevertheless, due to the randomness, the strategy is not always as satisfactory as expected. In this context, we present a test case prioritization approach using fixed size candidate set adaptive random testing algorithm to reduce the effect of randomness and improve fault detection effectiveness. The distance between pair-wise test cases is assessed by exclusive OR. We designed and conducted empirical studies on eight C programs to validate the effectiveness of the proposed approach. The experimental results, confirmed by a statistical analysis, indicate that the approach we proposed is more effective than random and the total greedy prioritization techniques in terms of fault detection effectiveness. Although the presented approach has comparable fault detection effectiveness to ART-based and the additional greedy techniques, the time cost is much lower. Consequently, the proposed approach is much more cost-effective.


Author(s):  
Soumalya Sarkar ◽  
Kushal Mukherjee ◽  
Soumik Sarkar ◽  
Asok Ray

This brief paper presents a symbolic dynamics-based method for detection of incipient faults in gas turbine engines. The underlying algorithms for fault detection and classification are built upon the recently reported work on symbolic dynamic filtering. In particular, Markov model-based analysis of quasi-stationary steady-state time series is extended to analysis of transient time series during takeoff. The algorithms have been validated by simulation on the NASA Commercial Modular Aero Propulsion System Simulation (C-MAPSS) transient test-case generator.


Sign in / Sign up

Export Citation Format

Share Document