scholarly journals State aware test case regeneration for improving web application test suite coverage and fault detection

Author(s):  
Nadia Alshahwan ◽  
Mark Harman

Regression testing is one of the most critical testing activities among software product verification activities. Nevertheless, resources and time constraints could inhibit the execution of a full regression test suite, hence leaving us in confusion on what test cases to run to preserve the high quality of software products. Different techniques can be applied to prioritize test cases in resource-constrained environments, such as manual selection, automated selection, or hybrid approaches. Different Multi-Objective Evolutionary Algorithms (MOEAs) have been used in this domain to find an optimal solution to minimize the cost of executing a regression test suite while obtaining maximum fault detection coverage as if the entire test suite was executed. MOEAs achieve this by selecting set of test cases and determining the order of their execution. In this paper, three Multi Objective Evolutionary Algorithms, namely, NSGA-II, IBEA and MoCell are used to solve test case prioritization problems using the fault detection rate and branch coverage of each test case. The paper intends to find out what’s the most effective algorithm to be used in test cases prioritization problems, and which algorithm is the most efficient one, and finally we examined if changing the fitness function would impose a change in results. Our experiment revealed that NSGA-II is the most effective and efficient MOEA; moreover, we found that changing the fitness function caused a significant reduction in evolution time, although it did not affect the coverage metric.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Negar Koochakzadeh ◽  
Vahid Garousi

Test redundancy detection reduces test maintenance costs and also ensures the integrity of test suites. One of the most widely used approaches for this purpose is based on coverage information. In a recent work, we have shown that although this information can be useful in detecting redundant tests, it may suffer from large number of false-positive errors, that is, a test case being identified as redundant while it is really not. In this paper, we propose a semiautomated methodology to derive a reduced test suite from a given test suite, while keeping the fault detection effectiveness unchanged. To evaluate the methodology, we apply the mutation analysis technique to measure the fault detection effectiveness of the reduced test suite of a real Java project. The results confirm that the proposed manual interactive inspection process leads to a reduced test suite with the same fault detection ability as the original test suite.


Author(s):  
Varun Gupta ◽  
Durg Singh Chauhan ◽  
Kamlesh Dutta

Regression testing has been studied by various researchers for developing and testing the quality of software. Regression testing aims at re-execution of evolved software code to ensure that no new errors had been introduced during the process of modification. Since re-execution of all test cases is not feasible, selecting manageable number of test cases to execute modified code with good fault detection rate is a problem. In past few years, various hybrid based regression testing approaches have been proposed and successfully employed for software testing, aiming at reduction in the number of test cases and higher fault detection capabilities. These techniques are based on sequence of selections, prioritizations and minimization of test suite. However, these techniques suffer from major drawbacks like improper consideration of control dependencies, neglection of unaffected fragments of code for testing purpose. Further, these techniques have been employed on hypothetical or simple programs with test suites of smaller size. Present paper proposes hybrid regression testing, a combination of test case selections, test case prioritizations and test suite minimization. The technique works at statement level and is based on finding the paths containing statements that affects or gets affected by the addition/deletion or modification (both control and data dependency) of variables in statements. The modification in the code may cause ripple effect thereby resulting into faulty execution of the code. The hybrid regression testing approach is aimed at detecting such faults with lesser number of test cases. Reduction in number of test cases is possible because of the decreased number of paths to be tested. A web based framework to automate and parallelize this testing technique to maximum extend, making it well suited for globally distributed environments is also proposed in the present paper. Framework when implemented as a tool can handle large pool of test cases and will make use of parallel MIMD architectures like multicore systems. Technique is applied on prototype live system and results are compared with recently proposed hybrid regression testing approach against parameters of interest. Obtained optimized results are indicators of effectiveness of approach in terms of reduction in effort, cost as well as testing time in general and increment delivery time in particular.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 05) ◽  
pp. 1137-1157
Author(s):  
V. Vamsi Krishna ◽  
G. Gopinath

Automatic functional tests are a long-standing issue in software development projects, and they are still carried out manually. The Selenium testing framework has gained popularity as an active community and standard environment for automated assessment of web applications. As a result, the trend setting of web services is evolving on a daily basis, and there is a need to improve automatic testing. The study involves to make the system to understand the experiences of previous test cases and apply new cases to predict the status of test case using Tanh activated Clustering and Classification model (TACC). The primary goal is to improve the model's clustering and classification output. The outcomes show that the TACC model has increased performance and demonstrated that automated testing results can be predicted, which is cost effective and reduces manual effort to a greater extent.


Author(s):  
Sudhir Kumar Mohapatra ◽  
Srinivas Prasad

Software testing is one in all the vital stages of system development. In software development, developers continually depend upon testing to reveal bugs. Within the maintenance stage test suite size grow due to integration of new functionalities. Addition of latest technique force to make new test case which increase the cost of test suite. In regression testing new test case could also be added to the test suite throughout the entire testing process. These additions of test cases produce risk of presence of redundant test cases. Because of limitation of time and resource, reduction techniques should be accustomed determine and take away. Analysis shows that a set of the test case in a suit should satisfy all the test objectives that is named as representative set. Redundant test case increase the execution price of the test suite, in spite of NP-completeness of the problem there are few sensible reduction techniques are available. During this paper the previous GA primarily based technique proposed is improved to search out cost optimum representative set using ant colony optimization.


2013 ◽  
Vol 10 (1) ◽  
pp. 73-102 ◽  
Author(s):  
Lijun Mei ◽  
Yan Cai ◽  
Changjiang Jia ◽  
Bo Jiang ◽  
W.K. Chan

Many web services not only communicate through XML-based messages, but also may dynamically modify their behaviors by applying different interpretations on XML messages through updating the associated XML Schemas or XML-based interface specifications. Such artifacts are usually complex, allowing XML-based messages conforming to these specifications structurally complex. Testing should cost-effectively cover all scenarios. Test case prioritization is a dimension of regression testing that assures a program from unintended modifications by reordering the test cases within a test suite. However, many existing test case prioritization techniques for regression testing treat test cases of different complexity generically. In this paper, the authors exploit the insights on the structural similarity of XML-based artifacts between test cases in both static and dynamic dimensions, and propose a family of test case prioritization techniques that selects pairs of test case without replacement in turn. To the best of their knowledge, it is the first test case prioritization proposal that selects test case pairs for prioritization. The authors validate their techniques by a suite of benchmarks. The empirical results show that when incorporating all dimensions, some members of our technique family can be more effective than conventional coverage-based techniques.


Sign in / Sign up

Export Citation Format

Share Document