Linear Elastic Fracture Mechanics (LEFM)-Based Single Lap Joint (SLJ) Mixed-Mode Analysis for Aerospace Structures

Author(s):  
B. K. Mahesha ◽  
D. Thulasi Durai ◽  
D. Karuppannan ◽  
K. Dilip Kumar
1987 ◽  
Vol 109 (3) ◽  
pp. 282-289 ◽  
Author(s):  
D. K. Shetty

Increasing use of ceramics in structural applications has led to the development of a probabilistic design methodology that combines three elements: linear elastic fracture mechanics theory that relates strengths of ceramics to size, shape, and orientation of critical flaws, a characteristic flaw size distribution function that accounts for the size effect on strength via the weakest-link concept, and a time-dependent strength caused by subcritical crack growth or other mechanisms. This paper reviews recent research that has been focused on the first of the above three elements, the investigation of fracture criteria for arbitrarily oriented flaws in ceramics, i.e., the mixed-mode fracture problem in linear elastic fracture mechanics theory. Experimental results obtained with two-dimensional through cracks and three-dimensional surface (indentation) cracks are summarized and compared to mixed-mode fracture criteria. The effects of material microstructure and the stress state on mixed-mode fractures are discussed. The application of mixed-mode fracture criteria in reliability analysis is illustrated for several simple stress states in the absence of time-dependent strength degradation.


2021 ◽  
Author(s):  
Xiaoliang Jia ◽  
Zhiwei Chen ◽  
Fang Ji

Abstract High strength steel is usually used in fabrication of hydrogen storage vessel. The fracture toughness of high strength steel will be decreased and the crack sensitivity of the structures will be increased when high strength steels are applied in hydrogen environment with high pressure. Hence, the small cracks on the surface of pressure vessel may grow rapidly then lead to rupture. Therefore, this paper makes a series of research on how to evaluate the 4130X steel hydrogen storage vessel with fracture mechanics. This study is based on the assumption that there is a semi-elliptic crack on internal surface of hydrogen storage vessel. First of all, based on linear elastic fracture mechanics, the stress intensity factors and crack tolerance of 4130X steel hydrogen storage vessel have been calculated by means of finite element method based on interaction integral theory and polynomial-approximated approach from GB/T 34019 Ultra-high pressure vessels. Then, a comparative study has been made from the results of above methods to find out the difference between them. At last, the fatigue life of a 4130X steel hydrogen storage vessel has been predicted based on linear elastic fracture mechanics and Paris formula. The calculation methods and analysis conclusion can be used to direct the design and manufacture of hydrogen storage vessel.


Sign in / Sign up

Export Citation Format

Share Document