Inertial Navigation and Initial Alignment Technology

Author(s):  
Xuefeng Li ◽  
Chaobing Li
1960 ◽  
Vol 13 (3) ◽  
pp. 301-315
Author(s):  
Richard B. Seeley ◽  
Roy Dale Cole

This paper describes and discusses some of the techniques by which a moving inertial platform may be aligned by using external velocity measurements and also presents some of the major problems and error sources affecting such alignment. It is based upon the results of a 3-year study, of inertial and doppler-inertial navigation at the Naval Ordnance Test Station, China Lake, California, and, in general, applies to inertial navigation systems which erect to either the local level or the mass-attraction vertical. Although rudimentary derivations are made of the alignment techniques, the paper is largely nonmathematical for ease of reading. Emphasis is placed upon the major errors affecting the alignment. This paper describes and discusses some of the techniques by which a moving inertial platform may be aligned by using external velocity measurements and also presents some of the major problems and error sources affecting such alignment. It is based upon the results of a 3-year study, of inertial and doppler-inertial navigation at the Naval Ordnance Test Station, China Lake, California, and, in general, applies to inertial navigation systems which erect to either the local level or the mass-attraction vertical. Although rudimentary derivations are made of the alignment techniques, the paper is largely nonmathematical for ease of reading. Emphasis is placed upon the major errors affecting the alignment.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Sun ◽  
Wenjun Yi ◽  
Dandan Yuan ◽  
Jun Guan

The purpose of this paper is to present an in-flight initial alignment method for the guided projectiles, obtained after launching, and utilizing the characteristic of the inertial device of a strapdown inertial navigation system. This method uses an Elman neural network algorithm, optimized by genetic algorithm in the initial alignment calculation. The algorithm is discussed in details and applied to the initial alignment process of the proposed guided projectile. Simulation results show the advantages of the optimized Elman neural network algorithm for the initial alignment problem of the strapdown inertial navigation system. It can not only obtain the same high-precision alignment as the traditional Kalman filter but also improve the real-time performance of the system.


Sign in / Sign up

Export Citation Format

Share Document