Study on Lamb Wave Dispersion Curves for the Testing of Metal Plates

Author(s):  
Jinggang Xu ◽  
Jingshan Deng
2002 ◽  
Vol 18 (1) ◽  
pp. 29-33
Author(s):  
Yung-Chun Lee ◽  
Yi Fan Tein ◽  
Yu Yi Chao

ABSTRACTThis paper reports the development of a point-focused PVDF transducer with a large aperture surface and its application on measuring Lamb wave dispersion curves. The point-focused transducer is constructed by forcing a piezoelectric PVDF film into a concave spherical shape. The acoustic waves radiated from the PVDF film are then focused into a point without using any acoustic lens. Similar to its line-focused counterpart, the point-focused transducer is capable of measuring dispersion curves of lamb waves provided its aperture angle is large enough. To verify this, experimental testing is carried out on several thin metal plates and good measurement results are observed. Future improvements and applications on the transducer will be addressed.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ameneh Maghsoodi ◽  
Abdolreza Ohadi ◽  
Mojtaba Sadighi

The major purpose of this paper is the development of wave dispersion curves calculation in multilayered composite-metal plates. At first, equations of motion and characteristic equations for the free waves on a single-layered orthotropic plate are presented. Since direction of wave propagation in composite materials is effective on equations of motion and dispersion curves, two different cases are considered: propagation of wave along an axis of material symmetry and along off-axes of material symmetry. Then, presented equations are extended for a multilayered orthotropic composite-metal plate using the transfer matrix method in which a global transfer matrix may be extracted which relates stresses and displacements on the top layer to those on the bottom one. By satisfying appropriate boundary conditions on the outer boundaries, wave characteristic equations and then dispersion curves are obtained. Moreover, presented equations may be applied to other materials such as monoclinic, transversely isotropic, cubic, and isotropic materials. To verify the solution procedure, a number of numerical illustrations for a single-layered orthotropic and double-layered orthotropic-metal are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jung-Ryul Lee ◽  
Jae-Kyeong Jang ◽  
Cheol-Won Kong

This study presents a noncontact sensing technique with ultrasonic wave propagation imaging algorithm, for damage visualization of liquid-immersed structures. An aluminum plate specimen (400 mm × 400 mm × 3 mm) with a 12 mm slit was immersed in water and in glycerin. A 532 nm Q-switched continuous wave laser is used at an energy level of 1.2 mJ to scan an area of 100 mm × 100 mm. A laser Doppler vibrometer is used as a noncontact ultrasonic sensor, which measures guided wave displacement at a fixed point. The tests are performed with two different cases of specimen: without water and filled with water and with glycerin. Lamb wave dispersion curves for the respective cases are calculated, to investigate the velocity-frequency relationship of each wave mode. Experimental propagation velocities of Lamb waves for different cases are compared with the theoretical dispersion curves. This study shows that the dispersion and attenuation of the Lamb wave is affected by the surrounding liquid, and the comparative experimental results are presented to verify it. In addition, it is demonstrated that the developed fully noncontact ultrasonic propagation imaging system is capable of damage sizing in submerged structures.


2017 ◽  
Vol 141 (2) ◽  
pp. 749-763 ◽  
Author(s):  
Wenbo Zhao ◽  
Ming Li ◽  
Joel B. Harley ◽  
Yuanwei Jin ◽  
José M. F. Moura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document