lamb waves
Recently Published Documents


TOTAL DOCUMENTS

1983
(FIVE YEARS 377)

H-INDEX

64
(FIVE YEARS 8)

Ultrasonics ◽  
2022 ◽  
Vol 119 ◽  
pp. 106592
Author(s):  
Fei Gao ◽  
Jiadong Hua

Author(s):  
Maria V. Wilde ◽  
Mikhail V. Golub ◽  
Artem A. Eremin

Laminate structures composed of stiff plates and thin soft interlayers are widely used in aerospace, automotive and civil engineering encouraging the development of reliable non-destructive strategies for their condition assessment. In the paper, elastodynamic behaviour of such laminate structures is investigated with emphasis on its application in ultrasonic based NDT and SHM for the identification of interlayer mechanical and interfacial contact properties. A particular attention is given to the practically important frequency range, in which the wavelength considerably exceeds the thickness of the film. Three layer model with spring-type boundary conditions employed for imperfect contact simulation is used for numerical investigation. Novel effective boundary conditions are derived via asymptotic expansion technique and used for analysis of the peculiar properties of elastic guided waves in considered laminates. It is revealed that the thin and soft film influences the behaviour of the laminate mainly via the effective stiffnesses being a combination of the elastic moduli of the film, its thickness and interface stiffnesses. To evaluate each of these parameters separately (or to figure out that the available experimental data are insufficient), a step-wise procedure employing the effective boundary conditions is proposed and tested versus the laser Doppler vibrometry data for Lamb waves in Aluminium/Polymer film/Alumunium structure. The possibility of using film-related thickness resonance frequencies to estimate the film properties and contact quality is also demonstrated. Additionally, the rich family of edge waves is also investigated, and the splitting of fundamental edge waves into pairs is revealed.


Author(s):  
Takaaki Fukuchi ◽  
Naoki Mori ◽  
Takahiro Hayashi

Abstract Controlling sound fields is a key technology for noise removal, acoustic lenses, energy harvesting, etc. This study investigated the control of sound field by a periodic layered structure. At first, we formulated the wave propagation in a periodic layered structure and proved that the wave fields constructed by the periodic boundary conditions are limited to plane wave modes with discretely different propagation directions. Numerical calculations clarified that the desired plane wave mode can be obtained in the transmitted wave through an intermediate thin-plate stacked region in a periodic layered structure, in which Lamb waves travel in each plate at different phase velocities and create phase difference at the exit of the intermediate thin-plate region. Further numerical investigations revealed that tuning frequency and length of the thin-plate region provides wave field more dominantly with a single wanted plane wave mode.


2022 ◽  
pp. 102605
Author(s):  
Geo Davis ◽  
Dileep Koodalil ◽  
Suresh Palanisamy ◽  
Romesh Nagarajah ◽  
Krishnan Balasubramaniam ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 228
Author(s):  
Jean-Christophe Vallée ◽  
Marie-Aude Ploix ◽  
François Baqué ◽  
Matthieu Cavaro ◽  
Jean-François Chaix

Leaky Lamb waves are proven effective to carry out nondestructive testing especially on parallel and immersed plates. To detect and localize defects in such a set, this work associates for the first time the topological energy method and leaky Lamb waves. This methodology is applied in a single immersed plate to validate its application. Firstly, Lamb mode A1 is generated in the plate, and the reflected waves on the defect are measured. A first case is examined where the edge is considered as a defect to be localized. Then, measurements are taken on a plate where a notch is machined. The measurements are time reversed and reinjected in a finite-element simulation. The results are then correlated with the direct problem of the topological energy method that is also simulated. In both cases, the defects are precisely localized on the energy images. This work is the preliminary step to an application of the topological energy method to a set of two parallel and immersed plates where the research defect is located in the second plate.


Author(s):  
Daiping Wei ◽  
Xiaofeng Liu ◽  
Bangxin Wang ◽  
Zhi Tang ◽  
Lin Bo

Abstract Lamb waves were utilized to quantify micro-crack damage in aluminum plates, and the scattering and mode conversion of Lamb waves passing through cracks were analyzed. The dynamic time warping (DWT) method was used to match and compare each Lamb wave time series that represented different damage degrees. The matching difference between the damaged plate and undamaged plate was taken as a marker to measure the damage degree of the workpiece. At the same time, due to the pathological alignment of traditional DTW methods, the shape context (SC) profile recognition method was introduced to optimize the algorithm for calculating the distance between sampling points in the DTW method and solve the pathological alignment problem. Finally, the SC-DTW method based on Lamb waves was verified by the finite element simulation model and bending test of aluminum plates. The results showed that the method was feasible for quantifying the damage degree of aluminum plates and had a great advantage in the analysis and processing of time series in low-sampling frequency and high-noise scenarios.


2021 ◽  
pp. 147592172110571
Author(s):  
Fuzhen Wen ◽  
Shengbo Shan ◽  
Li Cheng

High-order harmonic guided waves are sensitive to micro-scale damage in thin-walled structures, thus, conducive to its early detection. In typical autonomous structural health monitoring (SHM) systems activated by surface-bonded piezoelectric wafer transducers, adhesive nonlinearity (AN) is a non-negligible adverse nonlinear source that can overwhelm the damage-induced nonlinear signals and jeopardize the diagnosis if not adequately mitigated. This paper first establishes that the second harmonic shear horizontal (second SH) waves are immune to AN while exhibiting strong sensitivity to cracks in a plate. Capitalizing on this feature, the feasibility of using second SH waves for crack detection is investigated. Finite element (FE) simulations are conducted to shed light on the physical mechanism governing the second SH wave generation and their interaction with the contact acoustic nonlinearity (CAN). Theoretical and numerical results are validated by experiments in which the level of the AN is tactically adjusted. Results show that the commonly used second harmonic S0 (second S0) mode Lamb waves are prone to AN variation. By contrast, the second SH0 waves show high robustness to the same degree of AN changes while preserving a reasonable sensitivity to breathing cracks, demonstrating their superiority for SHM applications.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8127
Author(s):  
Weilei Mu ◽  
Yuqing Gao ◽  
Guijie Liu

Lamb waves have multimodal and dispersion effects, which reduces their performance in damage localization with respect to resolution. To detect damage with fewest sensors and high resolution, a method, using only two piezoelectric transducers and based on orthogonal matching pursuit (OMP) decomposition, was proposed. First, an OMP-based decomposition and dispersion removal algorithm is introduced, which is capable of separating wave packets of different propagation paths and removing the dispersion part successively. Then, two simulation signals, with nonoverlapped and overlapped wave packets, are employed to verify the proposed method. Thereafter, with the proposed algorithm, the wave packets reflected from the defect and edge are all separated. Finally, a sparse sensor array with only two transducers succeeds in localizing the defect. The experimental results show that the OMP-based algorithm is beneficial for resolution improvement and transducer usage reduction.


Sign in / Sign up

Export Citation Format

Share Document