material symmetry
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 16)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Til Gärtner ◽  
Mauricio Fernández ◽  
Oliver Weeger

AbstractA sequential nonlinear multiscale method for the simulation of elastic metamaterials subject to large deformations and instabilities is proposed. For the finite strain homogenization of cubic beam lattice unit cells, a stochastic perturbation approach is applied to induce buckling. Then, three variants of anisotropic effective constitutive models built upon artificial neural networks are trained on the homogenization data and investigated: one is hyperelastic and fulfills the material symmetry conditions by construction, while the other two are hyperelastic and elastic, respectively, and approximate the material symmetry through data augmentation based on strain energy densities and stresses. Finally, macroscopic nonlinear finite element simulations are conducted and compared to fully resolved simulations of a lattice structure. The good agreement between both approaches in tension and compression scenarios shows that the sequential multiscale approach based on anisotropic constitutive models can accurately reproduce the highly nonlinear behavior of buckling-driven 3D metamaterials at lesser computational effort.


2021 ◽  
pp. 108128652110216
Author(s):  
Victor A. Eremeyev

Using an unified approach based on the local material symmetry group introduced for general first- and second-order strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas for fluids a strain energy depends on a current mass density and its gradients. Both models found applications to modeling of materials with complex inner structure such as beam-lattice metamaterials and fluids at small scales. The local material symmetry group is formed through such transformations of a reference placement which cannot be experimentally detected within the considered material model. We show that considering maximal symmetry group, i.e. material with strain energy that is independent of the choice of a reference placement, one comes to the constitutive equations of gradient fluids introduced independently on general strain gradient continua.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Ali Abjadi ◽  
Mohsen Jabbari ◽  
Ahmad Reza Khorshidvand

Abstract This paper presents the steady-state thermoelasticity solution for a circular solid plate is made of an undrained porous piezoelectric hexagonal material symmetry of class 6 mm. The porosities of the plate vary through the thickness; thus, material properties, except Poisson's ratio, are assumed as exponential functions of axial variable z in cylindrical coordinates. Having axisymmetric general form, external thermal and electrical loads are acted on the plate and the piezothermoelastic behavior of the plate is investigated. Using a full analytical method based on Bessel Fourier's series and separation of variables, the governing partial differential equations are derived. A formulation is given for the displacements, electric potential, thermal stresses, and electric displacements resulting from prescribed the general form of thermal, mechanical, and electric boundary conditions. Finally, the application of the derived formulas is illustrated by an example for a cadmium selenide solid, the results of which are presented graphically. Also, the effects of material property indexes, the porosity, and Skempton coefficients are discussed on the displacements, thermal stresses, electrical potential function, and electric displacements.


Author(s):  
Mauricio Fernández ◽  
Mostafa Jamshidian ◽  
Thomas Böhlke ◽  
Kristian Kersting ◽  
Oliver Weeger

AbstractThis work investigates the capabilities of anisotropic theory-based, purely data-driven and hybrid approaches to model the homogenized constitutive behavior of cubic lattice metamaterials exhibiting large deformations and buckling phenomena. The effective material behavior is assumed as hyperelastic, anisotropic and finite deformations are considered. A highly flexible analytical approach proposed by Itskov (Int J Numer Methods Eng 50(8): 1777–1799, 2001) is taken into account, which ensures material objectivity and fulfillment of the material symmetry group conditions. Then, two non-intrusive data-driven approaches are proposed, which are built upon artificial neural networks and formulated such that they also fulfill the objectivity and material symmetry conditions. Finally, a hybrid approach combing the approach of Itskov (Int J Numer Methods Eng 50(8): 1777–1799, 2001) with artificial neural networks is formulated. Here, all four models are calibrated with simulation data of the homogenization of two cubic lattice metamaterials at finite deformations. The data-driven models are able to reproduce the calibration data very well and reproduce the manifestation of lattice instabilities. Furthermore, they achieve superior accuracy over the analytical model also in additional test scenarios. The introduced hyperelastic models are formulated as general as possible, such that they can not only be used for lattice structures, but for any anisotropic hyperelastic material. Further, access to the complete simulation data is provided through the public repository https://github.com/CPShub/sim-data.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1632
Author(s):  
Victor A. Eremeyev ◽  
Violetta Konopińska-Zmysłowska

For micropolar media we present a new definition of the local material symmetry group considering invariant properties of the both kinetic energy and strain energy density under changes of a reference placement. Unlike simple (Cauchy) materials, micropolar media can be characterized through two kinematically independent fields, that are translation vector and orthogonal microrotation tensor. In other words, in micropolar continua we have six degrees of freedom (DOF) that are three DOFs for translations and three DOFs for rotations. So the corresponding kinetic energy density nontrivially depends on linear and angular velocity. Here we define the local material symmetry group as a set of ordered triples of tensors which keep both kinetic energy density and strain energy density unchanged during the related change of a reference placement. The triples were obtained using transformation rules of strain measures and microinertia tensors under replacement of a reference placement. From the physical point of view, the local material symmetry group consists of such density-preserving transformations of a reference placement, that cannot be experimentally detected. So the constitutive relations become invariant under such transformations. Knowing a priori a material’s symmetry, one can establish a simplified form of constitutive relations. In particular, the number of independent arguments in constitutive relations could be significantly reduced.


Author(s):  
Lallit Anand ◽  
Sanjay Govindjee

This chapter provides an overview of the theory of finite elasticity including a review of finite deformation kinematic measures, stress tensors for finite deformation, the concept of material frame invariance and change of frame, and constitutive relations. Material symmetry is discussed, and the important case of isotropy is presented. Special considerations needed for incompressible isotropic materials are elaborated upon.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1133 ◽  
Author(s):  
Milad Shirani ◽  
David J. Steigmann

A Cosserat theory for fiber-reinforced elastic solids developed in Steigmann (2012) is generalized to accommodate initial curvature and twist of the fibers. The basic variables of the theory are a conventional deformation field and a rotation field that describes the local fiber orientation. Constraints on these fields are introduced to model the materiality of the fibers with respect to the underlying matrix deformation. A variational argument delivers the relevant equilibrium equations and boundary conditions and furnishes the interpretation of the Lagrange multipliers associated with the constraints as shear tractions acting on the fiber cross sections. Finally, the theory of material symmetry for such solids is developed and applied to the classification of some explicit constitutive functions.


2020 ◽  
Vol 9 (1) ◽  
pp. 38-45
Author(s):  
Roman Alvarez-Roca ◽  
Mariela Desimone ◽  
Mitchel G. S. Da Silva ◽  
Miguel A. Ponce ◽  
Elson Longo

 In the present study, tin oxide (SnO2) nanoparticles were synthesized by a precursor polymeric method. The obtained nanoparticles were doped with vanadium. The samples were characterized by powder XRD, TEM, optical UV and EPR studies. XRD and TEM showed the rutile crystal structure and its revealed that the lattice cell parameters and particles size were decreased with dopant level. Optical and EPR data confirmed that the doped V enters into SnO2 and distorted the host material symmetry. The films sensing characteristics have been studied from the aspect of doping level of sensing material and microstructure. It is found that V doping on SnO2 enhance sensor sensitivity towards CO gas. The results demonstrated that V doping can improving numerous applications which the SnO2 response is maximized.


Sign in / Sign up

Export Citation Format

Share Document