Cylindrical Structured Multiple-Input Multiple-Output Dielectric Resonator Antenna

Author(s):  
B. T. P. Madhav ◽  
M. Ajay Babu ◽  
P. V. S. Praneeth Kumar ◽  
M. Venkateswara Rao ◽  
D. Padma Srikar
Author(s):  
S. Salihah ◽  
M. H. Jamaluddin ◽  
R. Selvaraju ◽  
M. N. Hafiz

In this article, a Multiple-Input-Multiple-Output (MIMO) H-shape Dielectric Resonator Antenna (DRA) is designed and simulated at 2.6 GHz for 4G applications. The proposed structure consists of H-shape DRA ( =10) which is mounted on FR4 substrate ( =4.6), and feed by two different feeding mechanisms. First, microstrip with slot coupling as Port 1. Second, coaxial probe as Port 2. The electrical properties of the proposed MIMO H-shape DRA in term of return loss, bandwidth and gain are completely obtained by using CST Microwave Studio Suite Software. The simulated results demonstrated a return loss more than 20 dB, an impedance bandwidth of 26 % (2.2 – 2.9 GHz), and gain of 6.11 dBi at Port 1. Then, a return loss more than 20 dB, an impedance bandwidth of 13 % (2.2 – 2.7 GHz), and gain of 6.63 dBi at Port 2. Both ports indicated impedance bandwidth more than 10 %, return loss lower than 20 dB, and gain more than 10 dBi at 2.6 GHz. The simulated electrical properties of the proposed design show a good potential for LTE applications.


2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Nuramirah Mohd Nor ◽  
Mohd Haizal Jamaluddin

In this paper, a dual band multiple-input-multiple-output dielectric resonator antenna for wireless local area network application is presented. Two identical feeding techniques are used to feed the proposed antenna. The simulated impedance bandwidth for both port are the same which are 6.5% at 2.45 GHz and 3% at 5.2 GHz. The DRA also has an acceptable value of isolation over the operating frequency. The simulated S-parameter and other multiple-input-multiple-output parameters are studied and observed.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Kumar Yadav ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract In this article, cross-shaped metallic parasitic strips based two radiator element multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) is excited by quadrature wave transformer microstrip feedline, designed, simulated and fabricated for ultra-wideband (UWB) applications. The proposed MIMO antenna structure is implemented with the help of two rectangular-shaped radiator elements that supports three modes HE11δ , HE21δ , and HE12δ at 4.4, 8.3, 10.8 GHz respectively. These fundamental and higher-order modes are supported to wide impedance bandwidth. Inverted T-shaped metallic strip and ground stub to improve the impedance bandwidth 104.6% (3.3–10.8 GHz) with 5.7 dBi peak gain, to enhance the coupling coefficient by stub, scissor-shaped defected ground structure and cross-shaped metallic parasitic strips are used in the existed structure. The MIMO diversity parameters are implemented as simulated ECC ≤ 0.003, DG ≥ 9.98 dB, and CCL ≤ 0.68. All the obtained MIMO antenna parameters are within the acceptable limit for providing high data rate for UWB applications.


Author(s):  
Sumer Singh Singhwal ◽  
Ladislau Matekovits ◽  
Binod Kumar Kanaujia ◽  
Jugul Kishor ◽  
Saeed Fakhte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document