slot coupling
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 10 (3) ◽  
pp. 7-13
Author(s):  
I. Kuzmichev ◽  
B. I. Muzychishin ◽  
A. Y. Popkov

The paper analyzes the summation of the powers of two sources in a hemispherical open resonator (OR) during its tuning. The first higher axially asymmetric TEM10q oscillation mode is excited in the resonator. A circuit with an E- tee waveguide is proposed, which makes it possible to research the summation of the powers using a Gunn diode. Studies of the conducting part of the millimeter range have been undertaken. It is shown that the coefficient of powers summation of two sources in the OR using slot coupling elements does not exceed 72%. The use of one H- polarized diffraction grating, which is in the resonator, does not lead to a significant increase in the summation coefficient when moving it. This is due to the excitation of the first type of TEM10q oscillations in the resonator.


Author(s):  
Sounik Kiran Kumar Dash ◽  
Qingsha S. Cheng ◽  
Taimoor Khan

Abstract A superstrate loaded cylindrical dielectric resonator antenna is developed and demonstrated for dual-band circular polarization. The proposed antenna employs a microstrip-fed rotated cross-shaped slot coupling technique for exciting the dielectric resonator (DR). The design is developed in a straight forward way. Firstly, the DR is coupled with a conventional plus-shaped slot and operates in linear polarization mode at 7.4 and 11.2 GHz. Secondly, the slot is rotated by 10° to enable out-of-phase excitation and ensure circular polarization at the above-mentioned frequencies. In the third step, a square dielectric superstrate is placed above the DR which creates multiple reflection and enhance the gain up to ~8 dBi in both the frequencies without affecting other performances. The development stages are discussed in detail. The proposed design is demonstrated through prototype fabrication and characterization. This antenna can be used for X-band satellite communications.


Author(s):  
Irfan Ali ◽  
Mohd Haizal Jamaluddin ◽  
Abinash Gaya

In this paper, a wideband tetraskelion dielectric resonator antenna with a low profile and high gain for the upcoming fifth generation (5G) communication applications is presented. The proposed DR antenna has been designed at the operating frequency of 26 GHz. The designed antenna is etched on Rogers RT/Duroid 5880 substrate of dielectric constant =2.2, with a thickness of 0.254mm. The DR material having a relative dielectric constant ( ) of 10 is used for a proposed design. The antenna was fed by using a 50-ohm microstrip line with slot coupling. The simulation and optimization have been performed by using the commercial software CST Microwave studio. The proposed structure exhibits a wide impedance bandwidth of 19.6% for |S11|< -10 dB from 24.5 to 29.6 GHz and peak gain of 9 dBi with the efficiency of 95% for complete bandwidth. The results show that an antenna is low profile and can be used for 5G wireless communication Applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ming Li ◽  
Haiping Wei ◽  
Jiahao Zhao ◽  
Qingchang Tao ◽  
Zheng You

In this paper, on the basis of multifunctional reconfigurable pixel antenna (RPA) elements, a novel linear sparse array with an attractive compound reconfigurability is presented. It has the potential advantages of its beam scanning with low gain fluctuation, low sidelobe in two orthogonal planes, and polarization reconfigurable performance. Specifically, an RPA with simultaneous polarization and pattern reconstruction capabilities, consisting of the driven patch and the parasitic pixels on the same layer of dielectric substrate, is firstly designed, which can work in several operation modes corresponding to steerable beam directions θ=0°;θxoz=25°, 45°;θyoz=15° with two circular polarizations in X-band. Cross-slot coupling feed is used to improve polarization reconstruction capability and reduce the complexity of hybrid reconstruction topology optimization. Then, those RPAs are integrated into the 1×8 linear sparse array to realize the reconfiguration of two circular polarizations and beam steering in xoz- and yoz-plane. Simulation results show that the gain fluctuation and sidelobe level of the array during beam scanning have significant advantages over the previous phased array, and the generation of antenna grating lobes is avoided. Moreover, both RPA element and RPA array prototypes have been fabricated and measured to testify the efficiency. The measured results agree well with the simulated ones, which indicates the application potential in the field of modern wireless communication system of the proposed linear sparse array.


A two element array of circular shaped cavity backed substrate integrated waveguide (SIW) based antenna is proposed in this work. The elements are backed by a dielectric cavity of FR4 epoxy and fed by SIW slot coupling mechanism. Keeping the advantages of the conventional waveguides, the bandwidth of the radiation can be increased by choosing proper dimensions to the slots and circular patches. The two element array configuration in the design contributed to the comfortable uplift of the gain. The impedance matching is achieved by inserting a two arm power divider with pre-calculated dimensions. The accurate formulation of the electromagnetic problem of analyzing the SIW antenna is achieved by using integral equation based methods which can be solved numerically. The designed top layer of the antenna is analyzed with well known Method of Moments (MoM) and the results are compared. The functioning of the antenna is compared in terms of Return losses, radiation pattern and gain. The antenna exhibits 72% of bandwidth with peak gain of 4.2dB in the range of 4.4GHz to9.9GHz with the resonating frequency of 7.54GHz and well suited for C-band microwave communication applications.


Author(s):  
Weijian Pang ◽  
Zhiqiang Tong ◽  
Guosheng Yang ◽  
Xiaogang Liu ◽  
Hongquan Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document