Turbulent Spray Combustion

Author(s):  
Seong-Young Lee ◽  
Ahmed Abdul Moiz ◽  
Khanh D. Cung
Fluids ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 187 ◽  
Author(s):  
Fernando Luiz Sacomano Filho ◽  
Louis Dressler ◽  
Arash Hosseinzadeh ◽  
Amsini Sadiki ◽  
Guenther Carlos Krieger Filho

Evaporative cooling effects and turbulence flame interaction are analyzed in the large eddy simulation (LES) context for an ethanol turbulent spray flame. Investigations are conducted with the artificially thickened flame (ATF) approach coupled with an extension of the mixture adaptive thickening procedure to account for variations of enthalpy. Droplets are tracked in a Euler–Lagrangian framework, in which an evaporation model accounting for the inter-phase non-equilibrium is applied. The chemistry is tabulated following the flamelet generated manifold (FGM) method. Enthalpy variations are incorporated in the resulting FGM database in a universal fashion, which is not limited to the heat losses caused by evaporative cooling effects. The relevance of the evaporative cooling is evaluated with a typically applied setting for a flame surface wrinkling model. Using one of the resulting cases from the evaporative cooling analysis as a reference, the importance of the flame wrinkling modeling is studied. Besides its novelty, the completeness of the proposed modeling strategy allows a significant contribution to the understanding of the most relevant phenomena for the turbulent spray combustion modeling.


2009 ◽  
Vol 337 (6-7) ◽  
pp. 438-448 ◽  
Author(s):  
S. de Chaisemartin ◽  
L. Fréret ◽  
D. Kah ◽  
F. Laurent ◽  
R.O. Fox ◽  
...  

Author(s):  
O. Samimi Abianeh

Turbulent spray combustion of n-dodecane fuel was studied numerically in current paper. The ignition delay, lift-off length, combustion chamber pressure rise, fuel penetration and vapor mass fraction were compared with experimental data. n-Dodecane kinetic model was studied by using a recently developed mechanism. The combustion chamber pressure rise was modeled and compared with experiments; the result was corrected for speed-of-sound to find the ignition delay timing in comparison with pressure-based ignition delay measurement. Species time histories and reaction paths at low and high temperature combustion are modeled and studied at two conditions, 900 K and 1200 K combustion chamber temperatures. The modeled species mass histories were discussed to define the first-stage and total ignition delay timings. Among all of the studied species in this work, including OH, Hydroperoxyalkyl mass history can be utilized to determine the exact timing of luminosity-based ignition delay. Moreover, n-dodecane vapor penetration can be used to determine the luminosity-based ignition delay.


Sign in / Sign up

Export Citation Format

Share Document